Study the Ability of Saccharomyces cerevisiae to Remove Methyl Green Dye from Water as a Pollutant Agent
Main Article Content
Abstract
Biosorption ability of commercial dried Saccharomyces cerevisiae (Baker’s yeast), to remove the Methyl green dye from water, was studied. This dye was chosen due to wide using of it in the different industries which is dumped into wastewater. With a view to explore the optimum conditions for adsorption of dye, Batch experiments were performed under various experimental affecting conditions, which are dye concentration, temperature, contact time. The experiment's batches were held using various initial concentrations of dye from 10 to 50 mg L-1, absorbent (Baker's yeast) dosage 0.075g at diverse temperatures (20, 30 and 40°C), and pH=7. In which the results have shown when the temperature increased the adsorption efficiency increased too. The removal percentage (%R) of dye by the baker’s yeast reached equilibrium after 80 minutes. As well as, adsorption isotherm models (Freundlich and Langmuir) were studied. The maximum biosorption capacity values were calculated at mentioned conditions. Furthermore, Kinetic and Thermodynamic parameters were calculated for this adsorption process, which are indicating the process is endothermic, spontaneous process in nature and follow pseudo 2. Order model.