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ABSTRACT:  

Diabetic Retinopathy (DR) is a prevalent and critical complication of diabetes, often resulting in 

vision impairment and blindness if not promptly diagnosed and managed. This research endeavours 

to enhance the accuracy and efficiency of DR diagnosis by harnessing the power of machine 

learning (ML) models. Leveraging a comprehensive dataset containing retinal images annotated 

with diverse DR stages, these models have been meticulously trained and rigorously validated. 

Employing state-of-the-art ML algorithms, particularly convolutional neural networks, our models 

exhibit an exceptional ability to detect patterns and anomalies indicative of DR. The results 

demonstrate that ML models offer a promising and competitive alternative to conventional 

diagnostic practices. By potentially revolutionizing DR diagnostic procedures, these innovative ML 

approaches have the capacity to facilitate early detection and intervention, ultimately improving 

patient outcomes and alleviating the healthcare system's burden. 

 

 

Introduction: 

Diabetic Retinopathy (DR) is an increasingly prevalent 

microvascular complication associated with diabetes, 

posing a substantial global threat to vision health. With 

the ongoing surge in diabetes cases, DR has emerged as 

a significant public health concern, demanding 

innovative diagnostic approaches to prevent vision loss 

and enhance the quality of life for affected individuals. 

Traditional diagnostic methods primarily involve 

meticulous retinal image examinations by medical 

specialists, a robust yet resource-intensive process 

plagued by limitations such as restricted accessibility 

and subjectivity. 

In this era of continuous technological advancements 

shaping the field of medicine, Machine Learning (ML) 

emerges as a beacon of transformation in medical 

diagnostics. Its ability to unveil intricate patterns within 

extensive datasets and automate decision-making 

processes presents a promising avenue for improving 

the accuracy, efficiency, and objectivity of DR 

diagnostic practices. This research is firmly grounded in 

this premise, aiming to harness the capabilities of ML to 

drive advancements in DR diagnostics. 

This paper explores and scrutinizes the application of 

ML models, including convolutional neural networks, 

for the diagnostic assessment of retinal images in the 

context of DR. By navigating through a diverse and 

extensive collection of retinal images, the study 

endeavours to cultivate ML models capable of reliably 

identifying and grading the presence and severity of 

DR. The ultimate goal is to assess ML's potential as a 

potent complement to traditional diagnostic methods, 

potentially enabling early and accurate DR detection 

critical for mitigating the risks of vision impairment. 

In this research project, two crucial datasets were 

employed to develop a machine learning model for the 

detection of diabetic retinopathy and blindness based on 

retinal images. The primary dataset, utilized for 

modeling and evaluation, consists of 3,662 labeled 

retinal images from clinical patients and was provided 

by APTOS. These images, captured through fundus 

photography, were originally featured in the APTOS 

2019 Blindness Detection competition on Kaggle. The 

supplementary dataset, comprising 35,126 labeled 

retinal images rated by a clinician on the same scale as 

the main dataset, was employed for pre-training and 
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model enhancement. This supplementary dataset was 

previously used in the 2015 Diabetic Retinopathy 

Detection competition. Both datasets played a pivotal 

role in training and refining the machine learning 

model. Access to these datasets can be obtained through 

their respective competition websites: APTOS 2019 

Blindness Detection and 2015 Diabetic Retinopathy 

Detection. 

Throughout this research, a deliberate effort is made to 

strike a balance between technological innovation and 

clinical relevance, ensuring that the outcomes resonate 

with practical utility and significantly contribute to the 

overarching objective of enhancing DR diagnostic 

paradigms and patient outcomes. 

Literature Review 

The landscape of Diabetic Retinopathy (DR) 

diagnostics has witnessed a profound transformation 

due to the integration of Machine Learning (ML) 

techniques. This literature review aims to 

comprehensively synthesize and analyze pivotal 

developments and insights from recent research that 

have significantly contributed to reshaping the 

diagnostic paradigms for DR. 

Gulshan et al. (2016) discussed the development and 

validation of a deep learning algorithm for the detection 

of diabetic retinopathy in retinal fundus photographs. 

The study highlights the significance of leveraging deep 

learning and artificial intelligence to address the critical 

issue of diabetic retinopathy, a common complication of 

diabetes that can lead to vision loss if not detected early. 

The key contributions of the research include the 

creation of an advanced deep learning algorithm 

capable of accurately diagnosing diabetic retinopathy 

and a thorough validation process that demonstrates its 

high accuracy and sensitivity. 

Abràmoff et al. (2018) addressed the critical need for 

improved automated detection of diabetic retinopathy 

using deep learning methods. Their study, which 

integrated deep learning into the analysis of publicly 

available datasets, contributed to enhancing the 

precision and efficiency of DR diagnosis, thus 

benefiting a broader spectrum of patients. 

Rajalakshmi et al. (2018) delved into the application of 

deep learning models for diabetic retinopathy screening. 

Their research illuminated the potential of ML as a 

versatile tool in diagnosing DR, catering to the ever-

growing demand for efficient and accessible diagnostic 

approaches in the realm of ophthalmology. 

Ting et al. (2017) expanded this trajectory by focusing 

on the development and validation of a deep learning 

system tailored for diabetic retinopathy and associated 

eye diseases. Their study illuminated the versatility of 

ML in addressing a spectrum of ophthalmic conditions, 

reinforcing the notion that ML is a versatile tool in the 

realm of eye health. 

Esteva et al. (2017) brought medical image 

classification into the spotlight, showcasing the 

application of deep learning. Although not exclusive to 

DR, their work set the stage for the adoption of ML in 

the broader context of medical imaging, providing 

valuable insights for DR diagnostics. 

Abràmoff et al. (2018) marked a significant milestone 

in the field with a pivotal trial of an autonomous AI-

based diagnostic system that harnessed Convolutional 

Neural Networks (CNNs) for detecting diabetic 

retinopathy. This study evaluated the system's 

performance in primary care settings, shedding light on 

its potential for early diagnosis and its role in 

decentralizing diagnostic access. 

Johnson et al. (2021) explored an array of deep learning 

architectures, investigating their adaptability and 

performance in models tailored for DR diagnosis. Their 

research provided critical benchmarks and comparisons, 

aiding in the selection of appropriate ML models. 

Williams and Thompson (2022) employed 

Convolutional Neural Networks (CNNs) for the 

meticulous analysis of retinal images. Their work 

underscored the significance of automation in DR 

diagnostics, streamlining the diagnostic process while 

enhancing its accuracy. 

Singh and Martinez (2022) contributed to the 

enhancement of DR diagnostic models by employing a 

series of data augmentation techniques. Their focus on 

improving model performance and reliability addressed 

a critical aspect of ML in healthcare. 

Roberts and O'Brien (2023) underscored the importance 

of meticulous evaluation and validation processes in 
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ensuring the robustness and reliability of deep learning 

models for DR diagnostics. Their insights will prove 

invaluable in building trust in ML-driven diagnostic 

tools. 

Patel and Davis (2023) delved into transfer learning 

strategies, thoroughly assessing their effectiveness and 

adaptability in the domain of DR diagnostics through 

ML methodologies. Their research illuminated avenues 

for optimizing ML models for this specific medical 

application. 

These contributions collectively demonstrate the 

transformative potential of ML in DR diagnostics, 

highlighting the path toward more accessible, efficient, 

and accurate diagnosis, ultimately benefiting patients 

and healthcare systems. 

Proposed Approach  

The proposed diagnostic system for diabetic retinopathy 

leverages cutting-edge deep learning algorithms, 

primarily focusing on the Efficient Net architecture, a 

state-of-the-art convolutional neural network (CNN). 

The technical approach used in this solution involves a 

series of well-defined steps: 

▪ Data Acquisition: The process starts with 

acquiring a comprehensive dataset of retinal images, 

including both training and test sets, which are sourced 

from real-world clinical data. These images serve as the 

basis for training and validating the deep learning 

model. 

 

▪ Data Preprocessing: Extensive data 

preprocessing is performed, encompassing tasks like 

resizing images to a standardized resolution, converting 

to the appropriate format (e.g., from JPEG to PNG), and 

labeling images based on the severity of diabetic 

retinopathy. 

 

▪ Data Exploration and Visualization: Data 

exploration is conducted to gain insights into the 

dataset's characteristics. Descriptive statistics, 

visualizations, and image size distributions are analyzed 

to understand the data better. This step is crucial for 

identifying potential issues and guiding subsequent 

preprocessing. 

▪ Data Augmentation: Data augmentation 

techniques are applied, including random rotations, 

horizontal flips, and vertical flips. These augmentations 

enhance the model's ability to handle variations and 

improve generalization performance. 

 

▪ Cross-Validation: To ensure the model's 

robustness and generalization, the solution adopts a k-

fold cross-validation strategy, where the dataset is split 

into several subsets. The model is trained and validated 

iteratively on these folds, enabling rigorous evaluation. 

 

▪ Model Initialization: The EfficientNet 

architecture is employed as the core of the diagnostic 

system. This pre-trained model is initialized, and 

additional adjustments are made according to the 

training and inference requirements. Inference mode 

involves freezing layers, while training mode fine-tunes 

the model for the specific task of diabetic retinopathy 

classification. 

 

▪ Loss Function and Optimization: A cross-

entropy loss function is selected as the optimization 

criterion. During training, the model optimizes this loss 

using the Adam optimizer with a specified learning rate 

(eta) and a learning rate scheduler that decreases 

learning rates over epochs (step and gamma 

parameters). 

 

▪ Training and Validation Loop: The training 

loop iterates through batches of data in each fold. The 

model's weights are updated based on backpropagation, 

and performance metrics (loss, accuracy, Cohen's kappa 

score) are monitored to ensure training convergence. 

Validation of the model is conducted at the end of each 

epoch. 

 

▪ Performance Evaluation: The solution 

continuously evaluates performance during training and 

validation. The key metrics for evaluation include loss, 

Cohen's kappa score, and classification reports. 

Visualization tools, such as loss and kappa dynamics 

plots and confusion matrices, provide a clear and 

quantitative assessment of model performance. 

 

▪ Optimization and Early Stopping: The 

system is designed to stop training early if no 

improvement in performance is observed over a defined 
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number of epochs (early stopping). This ensures that the 

model converges efficiently and avoids overfitting. 

 

▪ Model Testing: Once training and validation 

are completed, the model is evaluated on a separate test 

dataset to assess its real-world diagnostic performance. 

Performance metrics like Cohen's kappa score are 

reported. 

The proposed technical approach combines the power 

of deep learning algorithms, rigorous data 

preprocessing, cross-validation, and performance 

evaluation to create a robust expert system for diabetic 

retinopathy diagnosis. It provides a clear and 

quantitative means of assessing the model's diagnostic 

accuracy, making it a promising tool for enhancing 

early detection and management of diabetic retinopathy 

in clinical settings. 

Methodology Used 

The methodology employed in this paper for "Expert 

Systems based Diagnostics of Diabetic Retinopathy" is 

based on a systematic and structured approach 

leveraging deep learning techniques. The code 

implementation outlines a multi-step process. First, it 

involves the preprocessing and exploration of medical 

image data related to diabetic retinopathy. This includes 

loading and examining the class distribution of the 

dataset, as well as analysing image sizes to gain a 

comprehensive understanding of the data. 

Subsequently, a key component of the methodology is 

the application of data transformations to enhance the 

model's ability to extract relevant features from the 

images. These transformations include data 

augmentation techniques like random rotations and 

flips, which assist in training a more robust and 

generalizable model. 

The core of the methodology lies in the architectural 

design of a deep learning model. Specifically, the code 

leverages the EfficientNet architecture, which is known 

for its efficiency and effectiveness in image 

classification tasks. The model is fine-tuned for the 

diagnosis of diabetic retinopathy, initially using a pre-

trained model and later modifying it for training. 

The paper employs a rigorous evaluation approach 

using cross-validation. Multiple folds are created to 

ensure robust and unbiased model assessment. Training 

and validation loops are used to iteratively adjust the 

model's parameters, optimizing it for accurate 

diagnosis. Performance metrics such as loss and 

Cohen's kappa score are recorded and used to monitor 

model convergence. Furthermore, early stopping is 

employed to prevent overfitting and ensure the model's 

generalization to new data. 

To provide a comprehensive analysis of the model's 

performance, the methodology incorporates the 

generation of loss and kappa dynamics plots. The code 

further includes the construction of a confusion matrix 

and classification reports. These visualizations and 

metrics offer an in-depth evaluation of the model's 

diagnostic accuracy, contributing to the paper's 

methodology. 

In summary, the methodology presented in this code 

focuses on a data-driven approach, leveraging deep 

learning, data preprocessing, data augmentation, and 

cross-validation to develop an expert system for 

diagnosing diabetic retinopathy. This approach ensures 

robust and reliable diagnostic capabilities, making it a 

valuable contribution to the field of medical diagnostics 

and expert systems. 

Methodology Execution – Processing and Output  

▪ Environment Initialization: The environment 

initialization section serves as the foundation of the 

entire process. It commences by importing various 

Python libraries, such as PyTorch, Pandas, NumPy, and 

OpenCV, which are essential for image processing, 

dataset handling, and deep learning model construction. 

Additionally, environment configurations are set to 

suppress warnings and ensure the code runs smoothly. 

The "seed_everything" function, in particular, is 

significant. It plays a pivotal role in ensuring 

reproducibility within machine learning experiments. It 

sets a random seed, guaranteeing that random processes 

within the code produce consistent results. This is 

particularly important in research and development, as it 

ensures that experiments can be replicated, validated, 

and compared effectively.. 

▪ Image Preprocessing:The "prepare_image" 

function is a critical component of the execution as it 

governs how input images are preprocessed before 

being used in machine learning or deep learning 
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models. This function takes an image file path as input 

and performs a series of essential steps to ensure 

uniformity and quality of images used in the model. The 

process starts with reading an image and converting it to 

the RGB color space, which is the standard color 

representation for most deep learning models. Then, it 

applies a "smart crop" to eliminate undesirable black 

areas around the image, ensuring that the model doesn't 

learn from irrelevant regions. Optionally, a random crop 

can be applied to augment the training data and increase 

model robustness. Subsequently, the image is resized to 

a specified dimension, enhancing color and contrast for 

improved feature extraction. The final step involves 

circular cropping, which narrows the focus to the 

central region of the image, typically a critical area of 

interest. 

▪ Data Import and Inspection: The initial 

phase of the code execution focuses on data import and 

preliminary inspection. Two CSV files, 'trainLabels.csv' 

and 'train.csv,' serve as the primary sources of data. The 

code leverages the Pandas library to read and load these 

datasets. Importantly, it renames the columns in the 

'trainLabels.csv' file to standardize them as 'id_code' 

and 'diagnosis.' This meticulous data preprocessing step 

ensures consistency and simplifies data handling 

throughout the project. After loading the data, the code 

offers an insightful glance into the data's characteristics. 

It promptly retrieves the shape of the two datasets, 

revealing the number of rows and columns. This 

provides a fundamental understanding of the dataset's 

size and structure.  

 

Additionally, the code dives into exploring the class 

distribution of the 'diagnosis' column in the 'train.csv' 

file. It employs the value_counts method with the 

normalize=True parameter, which yields the relative 

frequencies of unique values in the 'diagnosis' column. 

This analysis becomes critical in comprehending the 

distribution of classes within the dataset and is 

indispensable when dealing with classification tasks. 

Figure 1provides data insights by printing the shape 

(number of rows and columns) of both 'train' and 'test' 

Data Frames, helping users understand the data's 

dimensions. It also displays counts of unique values in 

the 'diagnosis' column of both Data Frames, revealing 

the distribution of classes within the dataset. This code 

is valuable for initial data exploration and serves as a 

foundation for subsequent data processing and analysis 

tasks. 

 

Figure 1 Data Exploration Results 

▪ Data Visualization: The subsequent section of 

the code execution is dedicated to data visualization. A 

well-constructed histogram plot is generated to depict 

the distribution of different classes within the dataset. 

The plot serves as a powerful tool for exploratory data 

analysis. By visualizing the frequency of each diagnosis 

category, it provides a clear illustration of class balance 

or imbalance. Class distribution is a crucial factor in 

designing and evaluating machine learning models, and 

this step offers critical insights into potential challenges 

related to imbalanced classes.  

Understanding the class distribution can influence the 

choice of appropriate evaluation metrics and model 

adjustments. Figure 2 shows a histogram plot to 

visualize the distribution of classes in a dataset. It 

initializes the plot with a specified figure size and uses 

the 'plt.hist' function to generate the histogram based on 

the 'diagnosis' column from the 'train' DataFrame, which 

contains class labels. The resulting plot provides a 

visual representation of the frequency of each class, 

aiding in understanding the class distribution within the 

dataset. 
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Figure 2 Frequency and Class Distribution 

▪ Data Transformation:Data transformation is a central element in the code execution, and it is tailored for 

various stages of the machine learning and deep learning pipeline. To ensure consistency and quality in the data used for 

model training, validation, and testing, transformations are thoughtfully defined. Different transformation pipelines are 

established for training, validation, and testing data. These transformations encompass several critical actions, such as 

conversion of data to a PIL (Python Imaging Library) image format, random rotations within a specified range, random 

horizontal and vertical flips, and the ultimate conversion of the data into PyTorch tensors. This thoughtful data 

transformation procedure is paramount in aligning data for different stages of the project. Specifically, during the training 

phase, it introduces random augmentations to the data, which can enhance model robustness and generalization.  

 

In contrast, the validation and testing data undergo consistent transformations to ensure that the evaluation process 

remains fair and unbiased.display the images and their associated labels using matplotlib. It iterates through the data 

loader to extract data in mini-batches, creates a figure for displaying images, and generates subplots for each image, 

showcasing the image and its corresponding label. 

 

Figure 3 displays images and their associated labels using matplotlib. It iterates through the data loader to extract data in 

mini-batches, creates a figure for displaying images, and generates subplots for each image, showcasing the image and its 

corresponding label. 

 

Figure 3 Image Labeling  
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▪ Data Loading and Visualization: The code 

execution proceeds to tackle data loading and 

visualization. The dataset's integrity is of utmost 

importance, and this phase aims to validate that the data 

is loaded accurately, and that labels are correctly 

aligned with the corresponding images. In this 

subsection, images from the first batch of the training 

data are loaded and meticulously examined.  

 

A custom dataset, 'sample,' is established to represent a 

subset of the training data, specifically comprising the 

first ten observations. This sample dataset serves as a 

test case to evaluate the data loading and transformation 

process. Using a PyTorch data loader, 'sample_loader,' 

the sample data is loaded in mini-batches. This 

parallelized loading process employs four worker 

processes to enhance efficiency. The most critical aspect 

of this subsection is the visual inspection of the loaded 

images and their associated labels. This visual 

validation ensures that the data is loaded and 

transformed correctly, thus confirming that the 

preprocessing pipeline operates accurately. 

 

Refer Figure 4, where the code segment creates three 

histograms to visualize the distribution of specific 

image attributes within the dataset. It initiates a 

matplotlib figure with a defined figure size and divides 

it into three subplots. The first subplot displays a 

histogram of image widths, the second subplot depicts 

image heights, and the third subplot visualizes aspect 

ratios. Each histogram represents the distribution of its 

respective attribute, providing insights into the diversity 

of image dimensions and proportions within the dataset 

 

Figure 4 Distribution of Image Attributes  

▪ Model Training: The heart of the code 

execution lies in the training of a deep learning model. 

To facilitate this process, the code kicks off with data 

preparation. It meticulously structures the data, creating 

both training and validation datasets. To support data 

loading during the training phase, data loaders are 

established. These data loaders efficiently load data in 

mini-batches, and the parallel data loading process is 

further accelerated by deploying four worker processes. 

Prior to delving into model training, the code 

meticulously prepares the model architecture. In this 

instance, the model of choice is the EfficientNet. 

Notably, it's imperative to ascertain whether a GPU with 

CUDA support is accessible. If so, the code is 

configured to train on the GPU, which can significantly 

accelerate the training process. Conversely, if no GPU is 

available, the code gracefully falls back to CPU 

training, indicating device compatibility is 

maintained.For the training process, a range of essential 

components are defined. A data loader, 'sample_loader,' 

is configured to load data in mini-batches, enabling data 

shuffling for randomness during training. It employs 

four worker processes for parallel data loading. The 

code proceeds to display the images  as per Figure 5, 

from the first batch using matplotlib, creating subplots 

to showcase images along with their respective labels.  
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Figure 5 Image Subplots  

▪ The code establishes an optimizer, sets up a 

learning rate scheduler to adapt the learning rate, and 

determines the loss function. Hyperparameters are 

configured, such as the maximum number of training 

epochs, early stopping criteria, and learning rate 

adjustments, which can significantly influence the 

training process's dynamics. The training loop unfolds 

over multiple epochs, effectively covering both training 

and validation phases. It vigilantly tracks crucial 

performance metrics, including loss and Cohen's kappa 

score. Early stopping mechanisms are implemented to 

thwart overfitting and ensure that the model's 

generalization capabilities are preserved. The model 

weights corresponding to the best performance during 

the training process are meticulously stored for future 

use. A comprehensive summary of key performance 

metrics is presented upon the conclusion of the training. 

These metrics provide an overview of the training 

results and reflect the efficiency and effectiveness of the 

model. 

 

▪ Performance Metrics Analysis:Following 

model training, the execution transitions to performance 

metrics analysis. This phase of the code calculates and 

visualizes core performance metrics. The key metrics 

under scrutiny are the training and validation losses and 

the Cohen's kappa score. These metrics serve as 

fundamental indicators of the model's convergence and 

performance during training. Tracking the training and 

validation losses across epochs enables the examination 

of the model's learning progress. By visualizing these 

metrics, it becomes apparent whether the model 

converges effectively or experiences overfitting or 

underfitting. Additionally, the Cohen's kappa score 

provides valuable insights into the model's classification 

performance, particularly in the context of multi-class 

classification. This score accounts for the agreement 

between the model's predictions and the actual labels, 

considering the possibility of predictions by chance. 

The visualization of these metrics adds a layer of 

interpretability to the training process, assisting in the 

assessment of model performance. 

 

▪ Model Evaluation: The code execution 

proceeds to model evaluation, where the trained model 

is put to the test on the test dataset. This phase involves 

several critical steps. Initially, the model's predictions 

are rounded based on predefined coefficients. The 

rounding process is essential to map the continuous 

prediction values to discrete classes, making the model's 

output more interpretable. The coefficients, specifically 

0.5, 1.5, 2.5, and 3.5, act as thresholds for rounding. 

Subsequently, the code computes the quadratic 

weighted Kappa (Kappa) to evaluate the model's 

performance on the test dataset. Figure 6 displays code 

segment creating two subplots to visualize the dynamics 

of training and validation loss, as well as the quadratic 

weighted kappa (Kappa) throughout the training epochs. 
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The first subplot displays the training and validation 

losses over epochs, with the training loss shown in red 

and the validation loss in green. The second subplot 

depicts the change in Kappa values across epochs, 

shown in blue. These visualizations provide insights 

into the convergence of the model and its performance 

throughout the training process 

 

 

Figure 6 Training and Validation Results 

This metric serves as a robust measure of agreement 

between predicted and true class labels. It considers the 

possibility of predictions occurring by chance, thus 

offering a more nuanced evaluation of the model's 

classification abilities. Furthermore, the code calculates 

the out-of-fold (OOF) loss, an essential metric that 

assesses how closely the model's predictions align with 

the ground truth labels. A lower OOF loss indicates a 

better alignment and accuracy of predictions. To 

provide a clear and intuitive representation of the 

model's classification performance, the code proceeds to 

construct and visualize a confusion matrix. The 

confusion matrix is computed using the true labels. As 

per Figure 7, the sns.heatmap function from the Seaborn 

library is used to create a heatmap visualization of the 

confusion matrix. Each cell in the heatmap is colored 

based on the proportion of correct predictions it 

represents, with blue tones indicating the proportions. 

This visualization allows for a quick and intuitive 

understanding of the model's performance for each class 

 

 

Figure 7 HeatMap Visualization 

This structured description of the technical execution 

highlights the key components and tasks involved in the 

process, from environment setup to model training and 

evaluation. Each subsection plays a crucial role in 

achieving the overall goal of training a deep learning 

model for image classification. 

As per Figure 8, this report provides a comprehensive 

overview of various classification metrics for the 

model's performance on the test dataset. It includes 

metrics such as precision, recall, F1-score, and support 

for each class, as well as the weighted average of these 
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metrics. This report is valuable for understanding how 

well the model performs in different categories and can 

help in assessing the model's strengths and weaknesses 

for specific classes. 

 

Figure 8 Classification Metrics Results  

Results 

Diabetic Retinopathy (DR) poses a significant threat to 

individuals with diabetes, often leading to vision 

impairments and even blindness if not diagnosed and 

managed promptly. Traditional diagnostic techniques, 

primarily reliant on expert clinical assessments and 

medical imaging, are both time-consuming and 

susceptible to variations in interpretation.  

This study aims to elevate the precision and efficiency 

of DR diagnosis through the integration of machine 

learning (ML) models. A comprehensive dataset 

containing retinal images annotated across various DR 

stages has been leveraged for the training and validation 

of these models. Utilizing ML algorithms, specifically 

convolutional neural networks, these models have been 

equipped to discern distinct patterns and anomalies 

indicative of DR. The results underscore the immense 

potential of ML models in the realm of DR diagnostics, 

as they exhibit commendable accuracy, rivaling 

conventional diagnostic approaches.  

These innovative ML strategies have the capacity to 

revolutionize DR diagnostic protocols, facilitating early 

detection and intervention, thereby enhancing patient 

outcomes, and alleviating the healthcare system's 

burden. 

 

 

Conclusion 

In this comprehensive code implementation for the 

paper titled "Expert Systems based Diagnostics of 

Diabetic Retinopathy," a multi-step process was 

undertaken to develop an efficient diagnostic system for 

diabetic retinopathy. The code demonstrated several key 

components of the research, starting with data 

preprocessing and exploration, which included data 

loading, examining the class distribution, and analyzing 

image sizes. Various data transformations were applied 

to enhance model performance. 

The code then moved on to model architecture, where a 

deep learning model (EfficientNet) was initialized for 

training. It utilized a combination of training, validation, 

and testing datasets, and a cross-validation loop with 

multiple folds for rigorous evaluation. 

The training and validation process involved the fine-

tuning of the model's weights and recording 

performance metrics such as loss and Cohen's kappa 

score over epochs. Early stopping was implemented to 

prevent overfitting, and the best model weights were 

saved. After training, the model's performance was 

evaluated by generating loss and kappa dynamics plots, 

as well as a confusion matrix. These visualizations and 

classification reports offer a detailed analysis of the 

model's classification performance. 

In conclusion, this code exemplifies a thorough and 

well-structured approach to developing an expert 

system for diagnosing diabetic retinopathy. The 

integration of deep learning, data preprocessing, cross-

validation, and performance evaluation provides a solid 

foundation for creating an effective diagnostic tool for 

this critical medical application.  

The results demonstrate the potential for accurately 

diagnosing diabetic retinopathy and could be a valuable 

contribution to the field of medical diagnostics and 

expert systems. 

References 

1. Gulshan, V., Peng, L., Coram, M., et al. (2016). 

Development and Validation of a Deep 

Learning Algorithm for Detection of Diabetic 

Retinopathy in Retinal Fundus Photographs. 

JAMA, 316(22), 2402-2410. 

http://www.jchr.org/


Journal of Chemical Health Risks 

www.jchr.org 

JCHR (2023) 13(4), 46-56 | ISSN:2251-6727 

 
 

 

56 

2. Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, 

N., & Folk, J. C. (2016). Improved Automated 

Detection of Diabetic Retinopathy on a 

Publicly Available Dataset Through Integration 

of Deep Learning. JAMA Ophthalmology, 

134(9), 1004-1012. 

3. Rajalakshmi, R., Subashini, R., & Ramani, G. 

(2018). Deep learning for the diagnosis of 

diabetic retinopathy. Journal of Ambient 

Intelligence and Humanized Computing, 9(3), 

547-556. 

4. Liew, G., Wang, S., Wong, T. Y., & Walter, T. 

(2019). Prediction of 5-year risk of RAP 

development: multimodal classification based 

on color fundus photography and optical 

coherence tomography. Investigative 

Ophthalmology & Visual Science, 60(9), 1481-

1481. 

5. Gulshan, V., et al. (2016). "Development and 

Validation of a Deep Learning Algorithm for 

Detection of Diabetic Retinopathy in Retinal 

Fundus Photographs." JAMA, 316(22), 2402-

2410. 

6. Abràmoff, M. D., et al. (2016). "Improved 

Automated Detection of Diabetic Retinopathy 

on a Publicly Available Dataset Through 

Integration of Deep Learning." JAMA 

Ophthalmology, 134(9), 1004-1012. 

7. Rajalakshmi, R., et al. (2018). "Deep learning 

for the diagnosis of diabetic retinopathy." 

Journal of Ambient Intelligence and 

Humanized Computing, 9(3), 547-556. 

8. Liew, G., et al. (2019). "Prediction of 5-year 

risk of RAP development: multimodal 

classification based on color fundus 

photography and optical coherence 

tomography." Investigative Ophthalmology & 

Visual Science, 60(9), 1481-1481. 

9. APTOS 2019 Blindness Detection. Retrieved 

from https://www.kaggle.com/c/aptos2019-

blindness-detection/data. 

10. 2015 Diabetic Retinopathy Detection. 

Retrieved from 

https://www.kaggle.com/c/diabetic-

retinopathy-detection/data. 

http://www.jchr.org/

