www.jchr.org

JCHR (2021) 11(4), 494-502 | ISSN:2251-6727

Schiff Base Ligand System and their Applications in Biological System, Catalysis and in Chemosensing: A Short Review

Jyoti Parkash¹, Jyotsna²

¹Sikh National College Banga, India

²Rayat-Bahra Institute of Eng. and Nano-Technology, Hoshiarpur, India

(Received: 16 September 2021 Revised: 11 October 2021 Accepted: 11 December 2021)

KEYWORDS

Schiff base, Imine, Azomethine, Antibacterial, Chemosensor

ABSTRACT:

Schiff base are the versatile ligands, prepared by the condensation reaction of primary amines with carbonyl compounds. Schiff base along their metal complexes having numerous application in catalysis, medicinal chemistry, polymerization, chemosensing and in organic compound synthesis. Due to broad spectrum of catalytic activities, Schiff base metal complexes are very useful in epoxidation, oxidation, reduction of ketones, and in polymerization. Their biological activity includes antibacterial, antifungal, antimicrobial, anticancer, antimalarial and antiviral etc. In this review we present the use of Schiff base and their metal complexes in catalysis, biological and in chemosensing activities.

Introduction

Schiff base ligands are the condensation product of primary amines and carbonyl compounds. They were first synthesized by Hugo Schiff in 1864. These are represented by $R_1N=CR_2R_3$ where R_1 , R_2 and R_3 may be alkyl or aryl groups. They were first reported by Hugo Schiff in 1864 [1], so these are named after him. They are formed according to the following reaction scheme 1.

$$R_1NH_2 + R_2C(=0)R_3 \longrightarrow R_1N=CR_2R_3 + H_2O$$

Amine Ketone or aldehyde Schiff base

Scheme 1. General scheme for Schiff base synthesis (where R_1 , R_2 and R_3 may be an alkyl or aryl group.

Schiff bases containing aryl substituents can be synthesized easily and are more stable because of effective conjugation, while those containing alkyl substituents are relatively less stable than Schiff bases of aromatic aldehydes [2]. Due to stearic hindrance, ketones reacts slower than aldehydes. The azomethine group, N=CH- present in the Schiff base is responsible for reactivity, stability and biological activity of the metal complex. Schiff base ligand contains donor atom like Nitrogen and Oxygen, which provides the binding

sites for metal ions through non-bonding electrons [3]. Schiff base along their metal complexes have good chelating property so these have numerous application in catalysis, polymerization, oxidation and in biological system.

Biological activity

Schiff bases contains an imine group -N=CH-, which helps to understand the mechanism of transamination and racemization reactions in biological system. Schiff bases exhibit a broad range of biological activities, including antifungal, antibacterial, antimalarial, anticancer, anti-inflammatory, antiviral properties [4]. Metal complexes of Mn(II) with ligand hydrazine carbothiamide show antibacterial activity against xanthomonas compestris. Schiff base of pyrolidione, pyridine with o-phenylenediamine and their metal complexes show antibacterial activity [5]. Salicylidene derivatives [6,7] neutral tetradentate ligands show remarkable antibacterial activity against S. flexneri and K. pneumonia. Other Schiff base derivatives possess antibacterial activity are: thiazole, pyridine, pyrazolone, hydrazide and indole etc.

Recently there was a considerable increase in life threatening incidence of fungal infections [8], so development of some effective antifungal agents has

www.jchr.org

JCHR (2021) 11(4), 494-502 | ISSN:2251-6727

become the necessity, hence Schiff base and their metal complexes are considered to be promising antifungal medicines [9]. Benzothiazole Schiff base [10] shows effective antifungal activity. The presence of napthyl groups increases fungicidal activity toward Curvularia. Moreover some Schiff bases [11] like pyrandione and furfurglidene nictoinamide shows antifungal activities against alternariasolani and candida albicans. Ru(II) complex of salicyladmine and Cu(II) complex of benzoylpyridine show antifungal activity. Kumar *et al* [12] reported a series of 3-(benzylideneamino)-2-phenylquinazoline-4(3H)-one and evaluated their cytotoxicity and antiviral activity.

Schiff bases of gossypol [13] show high anti-viral activity. Compounds containing 2-hydroxy substitution showed even better anti-viral activity. Salicylaldehyde Schiff bases derived from 1-amino-3-hydroxyguanidine tosylate are promising material for development of new anti-viral agents.

Schiff bases are very interesting compounds which possess antimalarial properties due to interesting moiety for designing of antimalarial agents. Cryptolepine an alkaloid, isolated from African plant Cryptolepissanguinolenta is also used in the treatment of malaria, is a product of reaction in which Schiff base is involved [14]. Salicylidieneanthranlic acid show antiulcer activity.

Among the biocidal properties, bases of isatin derivatives are also used in the destruction of protozoa and other parasites. Schiff bases also possess antitumor activity. Imine derivatives of N-hydroxy-N'-aminoguanidine are used in the treatment of cancer [15].

Rupanjali Sharma and others [16] synthesized Schiff ligand (SB N-(pyridine-4yl-methylene) 1) quinuclidine-3-amine derived 3-aminofrom quinuclidine and 4-pyridine carboxaldehyde scheme 2. This synthesized Schiff base was found to exhibits antimalarial activity against chloroquine-sensitive plasmodium falciparum strain.

Scheme 2. Synthesis of Schiff base ligand 1 possessing antimalarial activity

Zn(II) complexes of Schiff base ligand obtained from condensation reaction of salicylaldehyde with 2-amino-4-phenyl-5-methyl thiazole have been studied for its anticancer activity against different human tumor cell line such as liver cancer HepG2, lung carcinoma A549 and breast cancer MCF-7. The studies revealed that Zn(II) complex exhibit significant inhibition against these cell lines as compared to inhibition in the untreated cells [17].

A new Schiff base ligand obtained from condensation reaction of diacetylmonoxime with benzidiene along with its Co(III) complex 1 in Figure 1 have been reported to show antibacterial activity against Bacillius Subtilis, however no activity was observed against gram – negative bacteria E. Faecalis and E. Coli [18]

L = Acetate

Figure 1. Structure of Schiff base Co(III) complex 1

Similarly Saidul and others [19] synthesized Schiff base ligands (SB 2) derived from the condensation of o-hydroxybenzaldehyde with amino phenol and form metal complexes with Co(II), Ni(II) and Cu(II) ions in Figure 2. These complexes show significant antifungal activities against Gram positive and gram-negative bacteria.

Figure 2. Schiff base ligand 2 possessing antifungal activity.

Schiff base ligand (SB 3) with three donor sites derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid was synthesized in Figure 3. The antibacterial and

www.jchr.org

JCHR (2021) 11(4), 494-502 | ISSN:2251-6727

antifungal activities were explored by disc diffusion method. It was found that metal complexes of this tridentate ligand (Co(II), Ni(II), Zn(II) and Cu(II)) showed better antibacterial property as compare to Schiff base ligand [20].

$$C_2H_5O$$
 OH SB 3

Figure 3. Structure of Schiff base ligand 3

Schiff base molecules (SB 4) in Figure 4 of amino acids like glycine as their potassium salts with 2-hydroxy-5-methyl acetophenone and their complexes with divalent iron, nickel, zinc and manganese ions were prepared [21]. The ligand was trident with ONO donor sites except Zn(II), where it was monobasic bidentate.

Figure 4. Structure of amino acids Schiff base ligand

The antibacterial action of prepared ligand and their metal complexes against various gram-positive and gram-negative bacterial strains were studied *in-vitro* using Single Disc method. *Streptomycin* was taken as the standard antibiotic and DMSO as negative control. Incubation of plates were done for 24 hrs at 37°C. It was found that ligand and the metal complexes exhibited good antibacterial activity against bacterial strains except S.flexneri, B. coagulans and P. vulgaris. The antibacterial activity of ligand and metal complexes was found to be lower than standard antibiotic Streptomycin, however metal complexes showed better activity as compare to ligand.

Another example of tetradentate Schiff base ligand (SB 5) in Figure 5, which is prepared by refluxing a mixture of ethanolic solution of 1-2 ethanediamine and 4-acetylresorcinol [22]. Furthermore, their metal complexes have been reported which are synthesized by refluxing Schiff base ligand and metal acetates of metal

ions such as Co(II) and Cu(II) and Ni(II) ions, respectively.

Figure 5. Structure of Schiff base ligand 5

Antimicrobial activities of Schiff base ligand and their metal complexes were tested by Agar diffusion method for five bacteria strains against gram positive bacteria: B. cerus, S. faecalis, S. aureus and E. Coli, P. aeruginosa and gram-negative bacteria. The studies showed that metal complexes exhibit greater antibacterial activity as compared to their free ligand.

Some tetradentate ligand (SB 6) with N_2O_2 donor sites in Figure 6 and its complexes with Co(II) and Cu(II) metal ions were synthesized by the same strategies as discussed above [23]. Schiff base ligand along its Co(II) and Cu(II) complexes were tested for their antibacterial activity against the bacterial strain: E. Coli and B. cereus, S.aureus.

Figure 6. Structure of Schiff base ligand 6

It was observed that Schiff base metal complexes show greater antibacterial potency against bacteria strain as compared to free Schiff base ligand.

Catalytic activity

Catalytic activities of Schiff base metal complexes are found in literature. These show high catalytic activity and played a important role in numerous reaction to enhance their yield and product selectivity. Their simple methods of synthesis along their thermal stability contribute significantly the possibility of their application in catalysis [24]. Schiff base along with

www.jchr.org

JCHR (2021) 11(4), 494-502 | ISSN:2251-6727

their metal complexes are effective catalyst both in homogenous and heterogeneous reactions. Till date, they have been used for catalyzing various organic reactions like C-C bond formation, cross-coupling reactions, oxidation-reduction reactions etc. The catalytic activity of Schiff base and their metal complexes have been reported in various reactions.

Recently three Schiff base ligands (SB 7, 8 and 9) in Figure 7 have been derived from condensation reaction of 3-methoxy-2-hydroxybenzaldehyde and diamines 1, 2-diphenylendiamine, 1, 2-diamine-2-methylpropane and 1, 3-propanediamine [25]. Their manganese complexes were also tested as peroxidase mimics for H_2O_2 mediated reaction with the water trap ABTS. The studies show relevant peroxidase activity in complex of Schiff base 7 and 8 as compared to 9.

Figure 7. Structure of Schiff base ligands (7-9)

New Schiff base ligand (SB 10) containing ONO donor atoms in Figure 8 along with its Co(II), Cu(II) and Ni(II) complexes have been prepared from anthranilic acid and 5-bromosalicylaldehyde were used to check their catalytic activities [26].

Figure 8. Structure of Schiff base ligand 10

The catalytic study of redox reactions reveals that all metal complexes were found to increase the reaction rate of potassium persulphate and hydrogen peroxide with KI, further Ni(II) and Cu(II) complexes also exhibited a significant catalytic activity for benzopinacol formation reaction.

In the era of epoxidation reaction, The chiral Schiff base ligands (SB 11) in Figure 9 along with their Mn(II) complex have been reported to possess catalytic properties. The metal complexes were tested for their catalytic activity for the asymmetric epoxidation of styrene [27].

$$\begin{array}{c|c} R_1 & R_2 \\ R_1 & H & OCH_3 \\ L_2 & H & OCF_3 \end{array}$$

SB 11, 12

Figure 9. Structure of chiral Schiff base ligands with ONNO donor sites

It was found that under similar experimental conditions epoxidation reaction with ditertiary butyl peroxide yields higher conversion and enantio-excess than the reaction with hydrogen peroxide. Furthermore the complex containing OCF₃ groups show much better results than the complex containing OCH₃ group in styrene oxide conversions.

Recently Co(II) complex of Schiif base ligands bis-5-phenylazosalicylaldehyde ethyldiamine and bis-5-phenylazosalicylaldehyde-o-phenylene diimine have been reported [28]. The synthesized Co(II) complexes were tested for their catalytic oxidation of styrene into methyl ketones in presence of oxygen and pyridine. The study reveals that selectivity of Co(II) complex of bis-5-phenylazosalicylaldehyde-o-phenylene diimine was found to be high in propanol and further increased with increasing amount of catalyst, however selectivity of

www.jchr.org

JCHR (2021) 11(4), 494-502 | ISSN:2251-6727

Co(II) complex of bis-5-phenylazosalicylaldehyde ethyldiamine decrease with increase in concentration of catalyst.

Similarly asymmetric bidentate Schiff base ligand have been synthesized by condensation reaction of salicylaldehyde and tert-butyl amine [29], which was further used to form Zn(II), Co(II), Cu(II) and Pd(II) metal complexes. The reported metal complexes were used to check their catalytic activity for the selective oxidation of sulfides with H₂O₂ oxidant. The results shows that Zn(II) complex exhibited higher catalytic activity for oxidation of sulfides to the corresponding sulfones as compared to other metal complexes.

Schiff base as chemosensors

Schiff bases having high thermal stability, therefore used as stationary phases in can be chromatography [30]. The determination methods of metals in different oxidation state mainly needs instruments such sophisticated capillary electrophoresis, flame atomic absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy, which may not always convenient due to their high operational cost, maintenance expenses, needs expertise to run the instrument, complicated and laborious sample preparation. So due to simple monitoring and less expensive methods, chemosensor have gained importance in many disciplines such as biomedical and environmental sciences [31-33]

Schiff bases have coordinating sites which can capture metal ions and impart colors with some specific metal ions; hence they are used to sense some particular ions by naked eyes. In the past Schiff base moieties are used designing highly selective and for sensitive chemosensors for the detection of metal ions in aqueous aqueous medium. Amongst chromogenic sensors chemosensors, have important over the other recognition methods for detection of metal ions due to their sensitivity and selectivity to detect very low concentration without expensive instrumentation. Hence a cost effective chemosensor with high affinity for metal capturing should be designed.

Chemosensing based on colorimetric response and absorption/emission spectroscopic recognition is efficient, quick and cost effective offering detection limits comparable to the above mentioned techniques. Generally this technique require a chromophoric chelator which possesses donor sites for interacting metallic species and display a signal upon recognizing a particular metallic species.

Some benzothiazole-based Schiff base ligands (13-15) in Figure 10 acts as chemosensors for the recognition of Zn²⁺ ions have been reported [34], which give fluorescent turn-on signal with Zn²⁺ ions. The Schiff base chemosensors (13-15) showed different fluorescent emission upon binding with Zn²⁺ ions, which was absent in the presence of other metal ions. The studies revealed that chemosensor 13 was found to be highly sensitive toward Zn²⁺ ions in comparison of chemosensors 14 and 15, furthermore chemosensor 13 possess high cell permeability along with specific recognition of Zn²⁺ ions in living HeLa cells.

Figure 10. Structure of Schiff base ligands (13-15) as chemosensors.

Another Schiff base ligand (16) in Figure 11 have have been reported [35], synthesized by condensation reaction of 5-phenyl salicylaldehyde and 2-aminobenzohydrizide and was used as chemosensor for recognition of Zn²⁺ ions in aqueous solution. The results show that upon addition of Zn²⁺ ions in aqueous solution of chemosensor, an intense green fluorescence emission with a significant red shift was observed, however no fluorescence was observed with other ions.

www.jchr.org

JCHR (2021) 11(4), 494-502 | ISSN:2251-6727

Figure 11. Structure of Schiff base ligand 16

Furthermore Schiff base chemosensor gives real-time monitoring of Zn²⁺ ions in biological system with minimal cell damage.

Recently a quinoline-based Schiff base ligand (17) in Figure 12 have been synthesized by condensation reaction of 2-hydroxy-1-naphthalene carboxaldehyde with 2-hydrazinoquinolone behave as chemosensor [36]. The colorimetric studies showed a rapid color change from colorless to yellow-orange upon addition of Cd²⁺ ion in Acetonitrile-water solution, however poor fluorescence emission was observed upon addition of Cd²⁺ ions, which was absent in presence of other ions.

Figure 12. Structure of Schiff base ligand 17

Another new Schiff base ligand (18) in Figure 13 acts as chemosensor have been reported [37]. The reported chemosensor was explored for the selective recognition of Ag^+ ions. The results shows that there is significant enhancement in fluorescence emission intensity upon addition of Ag^+ ions, however no such effect was observed with other competing metal ions. Furthermore a chromogenic response was observed with Cu^{2+} ions.

Figure 13. Structure of Schiff base ligand 18

Similarly another chemosensor have been synthesized by condensation reaction of 1-pyrenecarboxaldehyde with 3-hydroxy-2-napthoic hydrazide [38]. The reported chemosensor was used as efficient fluorescent chemosensor for the recognition of Cu²⁺ ions which shows a gradual increase in fluorescence intensity upon addition of Cu²⁺ ions in DMSO:H₂O. In addition to this

the reported chemosensor was used in the recognition of Cu²⁺ in biological system.

S.Amani and coworker [39] reported a new azo-azomethine colorimetric and optical chemosensor (19) 4-((2,4-dichlorophenyl)diaznyl-2-(3-

hydroxypropylimino)methyl phenol in Figure 14. This receptor showed very selective colorimetric response to CN⁻ ion by changing its color from yellow to red dish orange in aqueous medium significantly this chemosensor can be used for detection of CN⁻ ion in basic conditions.

Figure 14. Structure of Schiff base ligand 19

M.Shyamal and other synthesized fluorogenic sensor (20), 1-(2- hydroxyl napthylmethylene) -2-(3-methoxy -2-hydroxy benzylidienes)hydrazine in Figure 15. It exhibits excellent selectivity and rapid response toward Zn²⁺ based on CHEF/ AIEE features. The Schiff base receptor, not only can sense Zn²⁺ ion through sharp colorimetric and turn-on fluroscese response, but also can distinguish between its significant AIEE activity and Zn²⁺ triggered AIEE activity through individual emission signal [40].

www.jchr.org

JCHR (2021) 11(4), 494-502 | ISSN:2251-6727

Figure 15. Structure of Schiff base ligand 20

Similarly P.Dong and coworker have synthesized a Schiff base chemosensor 1,3 and 1,4-bis(3,4-dimethyl - 5-ethoxy–carbonyl pyrol-2-yl-methyleneamine) benzene (21. 22) in Figure 16. It exhibits high selectivity as off-on fluorescence sensor toward Zn²⁺ ion. It can sense Zn²⁺ by naked eye with color change from colorless to yellow and yellow to dark yellow [41].

Figure 16. Structure of Schiff base ligand 21 and 22 Conclusion

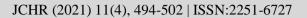
Due to their simple method of synthesis, Schiff base ligands and their metal complexes have been widely explored for their numerous applications in a variety of fields. In this review, the discussion has been focused on their biological, catalytic, and chemosensing properties. Schiff base ligands are highly versatile and have a wide range of applications, including their use as chemo/biosensors for the detection of metal ions and small molecules. These ligands offer advantages such as ease of synthesis, tunable properties, and potential for selective and sensitive detection, making them valuable tools in various disciplines.

References

- [1] Schiff H., 1864. Mittheilungen aus dem universitatslaboratorium in pisa: Eine neue Reihe organischer Basen, *Justus Liebigs Annalen der Chemie.*, 131, 118.
- [2] Arulmurgan S., Kavitha H.P., Venktraman B.R., 2010. Biological activities of Schiff Base and its complex: A Review, *Rasayan. J. Chem.*, 3(3), 385-410.
- [3] Kumble D., Pinto G.M., Pinto A.F., 2017. Application of Metal Complexes of Schiff base as

- an Antimicrobial Drug: A Review of Recent Work, *Int. J. Curr. Pharm. Res.* 9(3), 27-30.
- [4] Anand P., Patil P., Sharma V.M., Khosa V.K., 2012. Schiff Base: A review on biological insights, *Int. J. Drug Des. and Dis.*, 3, 851.
- [5] Gaur S., 2003. Physico-chemical and biological properties of Mn(II), Co(II), Ni(II) and Cu(II) chelates of Schiff bases, *Asian J. Chem.*, 15, 250-254.
- [6] Varshney V.K., Chandra V., Rawat M.,1992. Antimicrobial activity of Zn(II) and Cd(II) complexes of Schiff bases., J. Inst. Chem., 64, 135.
- [7] Raman N., Kulandaisamy A., Thangarja C., 2003. Redox and antimicrobial studies of Transition metal(II) tetradentate Schiff base complexes., *Trans. Met. Chem.*, 28, 29-36.
- [8] Sundriyal S., Sharma R.K., 2006. Current advances in antifungal targets and drug development., Curr. Med. Chem., 13, 1321-1335.
- [9] Rehman W., Baloch M.K., Muhammad B., 2004. Characteristic spectral studies and in vitro antifungal activity of some Schiff base and their organotin(IV) complexes., *Chin. Sci. Bull.*, 49, 119-122.
- [10] Dash B., Mahapatra P.K., Panda D., 1984. Fungicidal activities of Schiff base derived from phydroxobenzaldehydes and their derivatives., J. Ind. Chem. Soc., 61, 1061-1064.
- [11] Rao N.R., Rao P.V., Reddy G.V., 1987. Metal chelates of a Physiologically active ONS tridentate Schiff base., *Ind. J. Chem.*, 26A, 887-890.
- [12] Kumar K.S., Ganguly S., Veerasamy R., Clercq E.D., 2010. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones., *Eur. J. Med. Chem.*, 45, 5474.
- [13] Mirzabdullaev A.B., Aslanova D.Kh., 2004. Prep. Induktroy Interferona (Imst Biol Org Khim, Tashkent USSR., Chem. Abstr., 140, 398771.
- [14] Dutta B., Some S., Rey J., 2006. Thermal cyclization of 3-arylamino-3-(2-nitrophenyl)-

www.jchr.org


JCHR (2021) 11(4), 494-502 | ISSN:2251-6727

- propenal Schiff base hydrochlorides followed by triethyl phosphate mediated deoxygenation: A facile synthesis of quinodine., *Tetrahedron Lett.*, 47, 377-379.
- [15] Tang A., Lien E.J., Lai M.M., 1985. Optimization of the Schiff bases of *N*-hydroxy-*N*'-aminoguanidine as anticancer and antiviral agents., *J. Med. Chem.*, 28(8), 1103-1106.
- [16] Sharma R., Goswami A., Rudrapal M., Sharma D., 2016. In vitro evaluation of the antimalarial activity of a designed novel quinclidine derivative., *Curr. Sci.*, 111(12), 202-2030.
- [17] Mokhles M., Ammar A.E., Hanan A.L., 2016. Synthesis, anticancer activity and molecular docking of Schiff base complexs containing Thiazole moiety., *Beni-Suef Uni. J. Basic and App. Sci.*, 5(1), 85-96.
- [18] Kaya M., Yenikaya C., Colak A.T., Loak F.C., 2008. Synthesis, spectral, thermal and biological studies of Co(III) and binuclear Ni(II) complexes with a novel amine –imine-oxime ligand., *Russ. J. Gen. Chem.*, 78, 1808-1815.
- [19] Haque M.M., Alim M.A., Ray R.C., Ali M.S., 2015. Synthesis and characterization with antimicrobial activity of Cu(II), Ni(II) and Zn(II) metal complexes of Schiff base derived from o-aminophenol/ethyldiamine and cinamaldehyde., *Asian. J. Res. Chem.*, 8(9), 545-547.
- [20] Mounika K., Pragathi A., Gyanakumari C., 2010. Synthesis, characterization and biological activity of Schiff base derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid and its Transition metal complexes., J. Sci. Res., 2 (3), 87.
- [21] Ghosh R.D., Das S., Ganguly A., Banerjee K., 2011. An ivitro and in vivo study of novel zinc complex, Zn N-(2-hydroxyacetophenone)glycinate to overcome multidrug resistance in cancer., *Dalt. Trans.*, 40, 10873.
- [22] Hureta-Aguilar C.A., Pandiyan T., Singh N., 2015. Three novel input logic gates supported by fluorescence studies: Organic nanoparticles (ONPs) as chemo sensor for detection of Zn²⁺ and Al³⁺ in aqueous medium., *Spectrochimica Acta Part A.*, 146, 142-150.

- [23] Sedighipoor M., Kianfar A.H., Azarian M.H., 2017. Epoxidation of alkene by an oxovanadium (IV) tetradentate Schiff base complex as an efficient catalyst with tert-butyl hydroperoxide., *Inorg. Chim. Acta.*, 457, 116-121.
- [24] Gupta K.C., Sutar A.K., 2008. Catalytic activities of Schiff base transition metal complexes., *Coord. Chem. Rev.*, 252, 1420-1450.
- [25] Bermejo M.R., Carballido R., Fernandez M.I., Maneiro M., 2017. Synthesis, characterization and catalytic studies of Mn(III) Schiff base dicynamide complexes: checking the rhombicity effect in peroxidase studies., *Hindawi J. Chem.*, 7, 1-10.
- [26] Prajapati K.N., Brahmhatt M.P., Vora J.J., Prajapati P.B., 2019. Synthesis, catalysis and biological study of transition metal(II) chelates with ONO tridentate Schiff base ligand., *J. Pharm. Chem. Biol.* Sci., 7(2), 110-124.
- [27] Ordem O., Guzel B., 2014. Synthesis, characterization and catalytic activity of chiral binaphthyl Schiff base manganese complexes for the epoxidation of styrene., *Inorg. Chim. Acta.*, 418, 153-156.
- [28] Kandar A.A., Nejati K., Rezvani Z., 2005. Synthesis, characterization and study of the use of Cobalt(II) Schiff base complexes as catalyst for the oxidation of styrene by molecular oxygen., Molecule., 10, 302-311.
- [29] Kharshidifard M., Rudbari H.A., Askari B., Sahihi M., 2015. Cobalt(II), copper(II), zinc(II) and palladium(II) Schifff base complexes: Synthesis, characterization and catalytic performance in oxidation of sulphides., *Polyhedron.*, 95, 1-13.
- [30] Laghari A.J., Khuhawar M.Y., Ali Z.M., Palladium(II) chelate of tetradentate Schiff base as mixed stationary phase for gas chromatography., *J. Sep. Sci.*, 30(3), 359-366.
- [31] Wei T., Gao G., Qu W., Lin Q., 2014. Selective fluorescent sensors for mercury(II) ion based on an easy to prepare double naphthalene Schiff base., *Sensors and Actuators B:* Chemical., 199, 142-147.

www.jchr.org

- [32] Wang X.M., Yan H., Chen Y., Bao H.B., 2011. A new Schiff base fluorescent sensor for the detection of mercury ions., Ad. Mat. Res., 239, 1105-1108.
- [33] Hu S., Yan G., Wu C., Hi S., 2019. An ethanol vapor sensor based on a microfiber with a quantum dot gel coating., *Sensors.*, 19(2), 300.
- [34] Chang C., Wang F., Wei T., Chen X., 2017. Benzothiazole based based fluorescent sensor for radiometric detection., *Ind. Eng. Che. Res.*, 56, 8797-8805.
- [35] Lu Z., Fan W., Lu Y., Fan C., Chug W., 2018. A highly sensitive fluorescent probe for bioimaging zinc ion in living cells in zebrafish models., *New.J. Chem.*, 42, 12198.
- [36] Mathew M.M., Srekanth A., 2021. Zn²⁺ ion responsive fluorescent chemosensor probe of Thiophene-diocarbohydrazide derivatives., *Inorg* . *Chim. Acta.*, 516, 20149.
- [37] Sahu M., Manna A.K., Rout K., Patra G.K., 2020. A highly selective thiosemicarbazone based Schiff base chemosensor for colorimetric detection of Zn²⁺ and Ag²⁺ and turn-on fluorometric detection of Ag⁺ ion., *Inorg. Chim. Acta.*, 508, 119633.
- [38] Saravanan S., Subashini G., Shyamsivappan S., Suresh T., 2018. A selective fluorescence chemosensor: Pyrene motif Schiff base derivative for the detection of Cu²⁺ ion in living cells., *J. Photochem. Photobiol.*, A 364, 424-432.
- [39] Orojloo M., Amani S., 2017. Naked-eye detection of cyanide ions in aqueous media based on an azo-azomethine chemosensor., *Comptes Rendus Chimie.*, 20(4), 415-423.
- [40] Shyamal M., Mazumdar P., Maity S., Samanta S., 2016. Highly selective turn-on fluorogenic chemosensor for robust quantification of Zn(II) based on aggregation induced emission enhancement feature., Sensors., 1(6), 739-747.
- [41] Dong P., Zhang Y., Li Y., Wang F., Wang L., 2020, An unsymmetric salamo-like chemosensor for fluorescent Recognition of Zn²⁺., *J. Fluorescence.*, 30, 1049-1061.