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ABSTRACT:  

Automatic detection and recognition of traffic signs plays a crucial role in management of the 

traffic-sign inventory. It provides accurate and timely way to manage traffic-sign inventory with a 

minimal human effort. In the computer vision community the recognition and detection of traffic 

signs is a well-researched problem. A vast majority of existing approaches perform well on traffic 

signs needed for advanced drivers assistance and autonomous systems. However, this represents a 

relatively small number of all traffic signs (around 50 categories out of several hundred) and 

performance on the remaining set of traffic signs, which are required to eliminate the manual labor 

in traffic-sign inventory management, remains an open question. In this paper, we address the 

issue of detecting and recognizing a large number of traffic-sign categories suitable for automating 

traffic-sign inventory management. We adopt a convolutional neural network (CNN) approach, the 

Mask R-CNN, to address the full pipeline of detection and recognition with automatic end-to-end 

learning. We propose several improvements that are evaluated on the detection of traffic signs and 

result in an improved overall performance. This approach is applied to detection of 200 traffic-sign 

categories represented in our novel dataset. Results are reported on highly challenging traffic sign 

categories that have not yet been considered in previous works. We provide comprehensive 

analysis of the deep learning method for the detection of traffic signs with large intra-category 

appearance variation and show below 3% error rates with the proposed approach, which is 

sufficient for deployment inpractical applications of traffic-sign inventory management. 

 

 

I. INTRODUCTION 

Effective traffic-sign inventory management is crucial 

to public safety and smooth traffic flow [1, 2]. This is 

often done by hand. Vehicle-mounted cameras record 

traffic signs, which are then manually localized and 

recognized in an offline process to ensure they match 

the database. However, when applied to hundreds of 

kilometers of roads, such physical labor may be 

immensely time consuming. Having this process 

automated would greatly minimize the amount of 

human labor required and increase safety by allowing 

for the faster identification of broken or missing traffic 

signs [3]. 

Automating this process requires first eliminating the 

need for human intervention in the location and 

identification of traffic signs. Already, good detection 

and identification algorithms have been suggested [4, 5, 

6] for the challenge of traffic-sign recognition in the 

computer-vision community. However, these methods 

have only been developed for a limited number of 

classes, mostly for ADAS-related traffic signs [7] and 

autonomous vehicle-related traffic signs [8]. 

There is still some uncertainty about how to detect and 

recognize a wide variety of traffic-sign types. The 

problem of traffic-sign identification and detection has 

been addressed by a number of prior benchmarks [9, 

[10], [11], [12], [13]. Several of these studies, however, 

only looked at traffic-sign recognition (TSR) and not 

the far more difficult issue of traffic-sign detection 
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(TSD), in which the precise position of a traffic sign 

must be determined. 

Other benchmarks that do use TSD often only cover a 

subset of traffic-sign categories, typically those relevant 

to ADAS and autonomous vehicle applications. Most 

benchmark categories may be easily spotted by 

handmade detectors and classifiers due to their unique 

look and minimal inter-category variation. Signs of this 

kind include the obligatory circular sign and the 

forbidden triangle symbol. While the current 

benchmarks are useful for identifying the most common 

types of traffic signs, there are numerous additional 

classes that may be far more challenging to detect due 

to their great degree of variance in appearance. The 

size, shape, and color of these objects, as well as the 

presence or absence of certain text and symbols (like 

arrows), might vary widely even across instances of the 

same class. Because of the similarities in appearance 

between items of various categories, this usually results 

in a high degree of intra-category (within-category) 

appearance variance but a low degree of inter-category 

(between-category) appearance variation. However, this 

would be a time-consuming effort, especially when 

considering that many traffic-sign looks are not constant 

between nations, therefore it is likely that current 

approaches would need to be modified with hand-

crafted features and classifiers to handle such 

categories. Using feature learning based on actual 

instances is a far better strategy. It's easy to see how 

accommodate and record a wide range of visual 

differences across several traffic signs. Recent deep 

learning advancements have showed encouraging 

outcomes in the identification and recognition of 

common items. While deep learning methods have been 

applied for traffic-sign identification and recognition in 

the past [6], previous works' assessment had only 

included a small fraction of traffic-sign categories. The 

absence of a comprehensive dataset with hundreds of 

categories and enough cases for each category is a 

major roadblock to the widespread use of deep learning 

to analyze traffic signs. To avoid overfitting, enormous 

amounts of samples are required in deep learning, 

where models might include tens of millions of 

learnable parameters.  

For the purpose of managing the stock of traffic signs 

along roads, we tackle the problem of learning and 

identifying a large number of categories in this study. 

Our major contribution is a system based on deep 

learning and convolutional neural networks for training 

a large number of traffic sign classifications. Our 

method is based on the cutting-edge detector Mask 

RCNN [14], which has shown impressive precision and 

speed in object identification applications. Since the 

TSR and the region proposal network share the same 

network design, the whole learning process is 

streamlined. The convolutional approach, in contrast to 

the more traditional methods that rely on carefully 

crafted features, is applied across a wide range of 

categories, including those in which the appearance of 

individual traffic-sign instances can vary significantly 

both within and between categories. We also suggest 

enhancements to Mask R-CNN that are particularly 

important in the field of traffic signs. To improve the 

recall rate, we suggest several adjustments and offer a 

new augmentation approach tailored to traffic-sign 

categories, especially for smaller signs[1]. 

 

II. RELATED WORK 

There is a vast body of work on TSR and TSD, with 

many review articles accessible [11, 15]. Several recent 

research [15, 16] highlight the absence of a uniform 

publicly accessible benchmark dataset that would 

comprise a large number of different traffic-sign 

categories, making it impossible to determine which 

strategy offers the best overall results. Most writers test 

their methods using one of the several publicly available 

datasets that provide a modest amount of data.  

 

limited number of traffic-sign categories: 

• Among these benchmarks is the German 

Traffic-Sign Detection Benchmark (GTSDB) 

[10], which consists of three main categories 

designed for detection. 

• The German Traffic-Sign Recognition 

Benchmark (GTSRB) [9] has 43 distinct 

categories for the exclusive purpose of traffic-

sign recognition. 

• Detection and recognition data from 62 

categories in the Belgium Traffic Signs (BTS) 

collection [17]. 

• A road maintenance evaluation service in 

Croatia was recently obtained using data from 

Mapping and Assessing the State of Traffic 

Infrastructure (MASTIF) [18], which initially 
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included 9 categories but has now been 

expanded to 31 categories [19]. 

• 10 classes, for detection, in the Swedish Traffic 

Sign Dataset (STSD) [20]. 

• The LISA Dataset [11]: 49 types of traffic signs 

collected from American roadways by the 

Laboratory for Intelligent and Safe 

Automobiles. 

• The Tsinghua-Tencent 100K dataset [13]: a 

massive dataset with tens of thousands of 

photographs, ninety percent of which include 

traffic signs. 

Some methods [21], [22] sample photos from several 

datasets to do the assessment, which helps to expand the 

pool of potential traffic signs to evaluate. But many 

more writers rely on their own personal datasets [4, 

[23], [24], [25]. 

According to our best estimates, [24]'s private dataset, 

which differentiates between 131 kinds of non-text 

traffic signs from the roadways of the United Kingdom, 

has the biggest collection of categories ever studied. 

There are a lot of traffic-sign datasets, but it's still hard 

to compare detectors across many different categories. 

Our comprehensive dataset contains 200 traffic-sign 

categories, including a large number of categories with 

significant intra category variability, whereas existing 

benchmarks tend to focus on small numbers of super 

categories (GTSDB [10]) or on small numbers of simple 

traffic signs (BTS [17], MASTIF [18], STSD [20], 

LISA [11]). Tsinghua-Tencent's 100K dataset is the 

closest massive one, but even so, they only evaluate on 

45 basic traffic signs. In contrast, our data collection 

allows for a deep dive into detectors as they pertain to 

traffic-sign stock-taking. TSR and TSD have used 

several different approaches. The histogram of oriented 

gradients (HOG) [12, 24], [26], [16], [5], [19], [10], the 

scale invariant feature transform (SIFT) [5], the local 

binary patterns (LBP) [16], and the integral channel 

features [26] are all examples of features that have 

traditionally been created by hand. 

Support vector machine (SVM) [24], [16], [27], logistic 

regression [28], and random forests [16], [27], as well 

as extreme learning machine (ELM) [19]-style artificial 

neural networks, have also been used. 

TSR and TSD, along with the rest of computer vision, 

have recently benefited from the rebirth in CNN 

technology. Using a contemporary CNN method, [29] 

was able to automatically extract multi-scale features 

for TSD. Automatic feature representation learning and 

final classification in TSR have both been accomplished 

using convolutional neural networks [30, [31], [32], 

[33]. Combining a convolutional neural network (CNN) 

with a multilayer perceptron (MLP) was used in [34] to 

boost recognition accuracy, while [30], [32] advocated 

using an ensemble classifier made up of many CNNs to 

do the same. CNN-based feature learning followed by 

ELM classification is used in [35], whereas a deep 

network with spatial transformer layers and a tweaked 

inception module is used in [36]. 

According to [37], CNNs are superior than humans at 

GTSRB in terms of recognition accuracy. In recent 

research [6, 13], CNNs were used to solve both the TSR 

and TSD issues at once. For the latter, they utilize an 

OverFeat [38] network with some significant tweaks, 

while for the former, a fully convolutional network was 

used to generate an image heat map, which was then 

detected using a region proposal approach. Finally, the 

collected areas were classified using a dedicated CNN. 

Our deep learning-based method is unique in 

comparison to similar studies. We propose 

comprehensive feature learning with end-to-end 

learning as an alternative to more conventional 

techniques that rely on hand-crafted features and 

machine learning [12, 24]. In addition, our strategy is 

distinct from others that use deep learning to detect 

traffic signs. Instead of a dedicated technique for 

producing region recommendations, like in [6] and [13], 

we leverage deeper networks based on the VGG16 [39] 

and ResNet-50 [40] architectures in our Mask R-CNN-

based approach. We also use a network that has already 

been trained on ImageNet, which drastically decreases 

the number of samples needed for training compared to 

both [6] and [13]. Furthermore, we have incorporated a 

number of enhancements that have resulted in increased 

efficiency. 
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Lee and Kim (2018) present a unique convolutional 

neural network (CNN) traffic-sign identification system 

that provides accurate predictions of both the sign's 

position and boundaries. Even though the precision was 

outstanding, Lee's crew had to work with very detailed 

photographs. Hu et al. (2016) narrowed their attention 

on traffic signs, automobiles, and bicycles. Their 

proposed framework used a single learning technique to 

identify all three categories. The traffic sign detector in 

their model required the least amount of time since less 

individual sub-detectors were utilised. Time required to 

complete the detection process rose considerably once 

further characteristics were introduced to facilitate the 

identification of other items. Regardless of the weather, 

the approach provided in (Greenhalgh and Mirmehdi, 

2012) is able to reliably recognize the picture areas 

having signals as maximal stable extremal regions. 

Support vector machine (SVM) classifiers that were 

trained using Histogram of Oriented Gradient (HOG) 

features are used for sign recognition. The recall and 

accuracy rates, however, were only 86% and 80%. 

Later, Greenhalgh and Mirmehdi (2015) used a scene 

structure to zero down on picture search locations where 

the presence of a traffic sign was very likely. False 

positives have resulted in significant losses to the 

accuracy parameter, and the frame rate has decreased 

from 14 frames/s to 6 frames/s as a result of the removal 

of structural information. 

The Extreme Learning Machine (ELM) technique was 

used to train a two-module solution for traffic sign 

identification (Huang et al., 2017) that consists of a 

HOG extraction feature and a single classifier. More 

than half of the photos were incorrectly classified, and 

the model's performance was dependent on the tuning 

parameter. In lieu of the standard CNN method, Huang 

et al. (2020) developed a visually-based automated 

recognition system. However, the attained accuracy was 

much lower on average than the suggested RMR-CNN 

approach. While Yang et al. (2016) detail a lightning-

fast technique for traffic sign identification that 

combines SVM and CNN, its accuracy falls short of that 

of state-of-the-art systems such Mask R-CNN. A 

method for detecting traffic signs was proposed by 

Chen and Lu (2016); it combines Adaptive Boosting 

(Adaboost) with Support Vector Recognition (SVR). 

Liu et al. (2016) reported a TSR strategy that makes use 

of high contrast area extraction, an extended sparse 

representation, a color enhancement technique, and 

voting of nearby features. The negative of their 

methodology is that the colors of other objects, such as 

those on traffic signals, are boosted, which causes a 

delay in TSR. 

Temel et al. (2020) developed a model that could 

recognize traffic signs regardless of environmental 

factors such as rain or a dirty camera lens. Only 80% 

were correct, however. For TSDR, Kamal et al. (2019) 

propose SegU-Net, a hybrid of SegNet (a state-of-the-

art segmentation network) and U-Net. The model's 

95.29% accuracy on the German Traffic Sign Detection 

Benchmark dataset is lower than that of more traditional 

approaches such as Deep Neural Networks with 

Convolutional layers and Spatial Transformer 

Networks. MicroNet is a small neural network 

architecture developed by Wong et al. (2018) 

specifically for TSR. In terms of computational speed, 

modern neural network designs such as Mask R-CNN 

and Faster R-CNN excel. In Avramovi et al. (2020), the 

authors propose a CNN-based TSDR with a YOLO 

(You Only Look Once) architecture. The primary goal 

of this work is to enhance the speed and accuracy of 

detection based on high-definition photographs by 

zeroing in on specific areas of interest within those 

images. However, the method used in the 

aforementioned research might result in the selection of 

areas in a picture that may not have any traffic signs. 

The difficulties in seeing and understanding Chinese 

characters on road signs were detailed by Guo et al. 

(2020). The downside of this approach was that 

occlusion affected the precision with which Chinese 

characters were detected, leading to certain characters 

being unrecognized and others being recognized 

wrongly. 

 

III. TRAFFIC-SIGN DETECTION WITH MASK 

R-CNN 

Here we introduce our traffic-sign detection system, 

which makes use of a modified version of the Mask R-

CNN detector. To begin, we introduce the Mask R-

CNN detector and then proceed to describe our 

modified version of the algorithm specifically designed 

to learn traffic sign categories. 
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A. Mask R-CNN 

For a more in-depth explanation of Mask R-CNN, we 

recommend reading [14]. Similar to Faster R-CNN [41], 

the Mask R-CNN network [14] consists of two nodes. 

The first component is a region proposal network 

(RPN), a deep fully convolutional network that receives 

an input picture and outputs a series of rectangular 

object suggestions, each with an objectness score. The 

second component is a convolutional neural network 

(CNN) tailored specifically to the task of categorizing 

suggested areas into existing ones; it goes by the name 

Fast R-CNN. Fast R-CNN is very effective because it 

uses shared convolutions across different proposals. To 

further improve the quality of the suggested areas, 

bounding box regression is also carried out. Together, 

RPN and Fast R-CNN share their convolutional 

characteristics to form a single unified network. The 

RPN module directs the attention of the Fast RCNN 

module, using language popularized by recent 

discussions of neural networks equipped with a 

"attention" mechanism. Then, by integrating a Feature 

Pyramid Network (FPN) into the base network design, 

Mask R-CNN enhances the original system [42]. Since 

the FPN collects features from lower layers of the 

network before the down-sampling destroys essential 

characteristics in tiny objects, it helps the detector 

perform better on these items. In Mask R-CNN, a 

residual network (ResNet) [40] is used in lieu of the 

VGG16 [39] used in Faster R-CNN's underlying 

network architecture. Both Faster and Mask R-CNN are 

taught to perform classification and region suggestion 

tasks. A stochastic gradient descent is used to do this. 

Mask R-CNN uses end-to-end learning to concurrently 

learn both networks. To do this, the first version of 

Faster R-CNN used a 4-step optimization procedure that 

switched back and forth between the two jobs. 

However, the more recent end-to-end learning strategy 

from Mask R-CNN may be used with Faster R-CNN as 

well. Before training on the target domain, it is common 

practice to initialize both networks using an ImageNet-

pretrained model. In the testing phase, both approaches 

allow for rapid detection and identification. The trained 

model produces a collection of item bounding boxes for 

each input picture, with each box having a category 

name and a softmax score in the range [0, 1]. 

 

B. Adaptation to traffic-sign detection 

Mask R-CNN is a generic approach to object 

identification and recognition. We created and 

implemented a number of TSD-specific enhancements 

to make it suitable for use in this area. 

First, we add OHEM (online hard-example mining) to 

the Fast R-CNN module, which is responsible for 

classification learning. We update the technique for 

picking ROIs that are transmitted to the classification 

learning module, building on the work of Shrivastava et 

al. [43], who developed OHEM for Faster RCNN. 

Typically, 256 regions of interest (ROIs) per picture are 

chosen at random, with some being designated as 

foreground (traffic signs), and others as background 

(nontraffic signs). In our method, ROIs are no longer 

chosen at random but rather depending on the value of 

their classification loss. Each region's loss is ranked, 

and only those with a high enough loss are sent on to 

the module that learns to classify them. This guarantees 

that the network is learning from the most challenging 

cases, or the samples on which it made the most 

mistakes. To guarantee that each gradient descent step 

has a enough number of positive and negative samples, 

we execute selection independently for the background 

and foreground objects. Using the preexisting 

classification module, we are able to retrieve the 

classification losses for ROIs, allowing us to build 

OHEM as a fully-fledged learning system. Keep in 

mind that the RPN only calculates the top ROIs based 

on their object ness score when calculating 

classification loss, which is a criterion for picking ROIs. 

To get rid of the redundant ROIs, we use a non-maxima 

suppression (NMS) on a dataset of 2000 regions. This is 

a common method used in Mask R-CNN to narrow 

down the pool of potential regions of interest (ROIs) 

before making a learning decision. We tried training 

with more than 2000 areas in front of the NMS, but the 

slower NMS made this approach prohibitively slow 

with no discernible improvement in performance. 

 

b) Selected training sample distribution: The 

suggested method further enhances the technique used 

to pick training samples for the region proposal 

network. Mask R-CNN used to choose regions of 

interest (ROIs) at random. The foreground and 

background are processed independently. However, 

random selection causes imbalance into the learning 
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process when both tiny and big items are present in the 

picture at the same time. The disparity arises because 

there are many more ROIs covering big objects than 

covering little ones. The learning process would be 

skewed if samples were selected according to this 

distribution, since bigger items would be noticed more 

often and preferred considerably more than smaller 

ones. We address this problem by adjusting the 

proportion of training samples from each object size. To 

do this, we assign each item in the picture a uniform 

number of region of interest (ROI) selections. 

 

c) Sample weighting: We use sample weighting to 

make the learning process more efficient. Our testing 

revealed that Mask R-CNN falls short of a perfect recall 

score on occasion because of missing area 

recommendations. We solve this problem by giving 

various training zones equal weight. Both foreground 

and background regions are chosen during training, 

while the latter tends to be favored due to the rarity of 

good region proposal candidates for tiny traffic signs. 

Without any kind of weighting, the learning process 

will tend to pay more attention to, and so learn more 

about, items in the background. We solve this issue by 

giving less weight to the background areas, which 

makes the network focus on understanding what's in the 

front. Backgrounds are weighted 0:01 for the region 

proposal network (RPN) and 0:1 for the classification 

network (CN) throughout their respective training 

processes. 

Since regions ignored at this stage in the pipeline cannot 

be recovered by the classification module and would 

lead to poor overall recall if not addressed, this 

enhancement is especially critical for the RPN.  

 

d) Adjusting region pass-through during detection: 

Finally, during the detection phase, we modulate the 

amount of ROIs sent to the classification network via 

the RPN. Due to the enormous number of relatively tiny 

objects present in the traffic-sign domain, the total 

number of areas traversed must be modified. We double 

it, from 1,000 to 10,000 areas, every FPN level in 

advance of the NMS. The NMS 2000 regions are kept 

after combining ROIs from all FPN levels. Enhanced 

information The size of the training set is a critical 

component in deep model learning. Millions of trainable 

parameters render the system indeterminate without a 

large enough sample size. We suggest an extra data 

augmentation in addition to a pre-trained model that 

was trained on 1:2 million photos from ImageNet to 

help with this problem. Because of how traffic signs 

work, we can easily create a large number of new 

samples by applying arbitrary transformations to 

existing traffic sign instances. By manipulating 

subsamples of real-world training data, we can generate 

new synthetic traffic-sign occurrences. The proposed 

dataset includes pictures of traffic signs tagged with 

bounding boxes so that they may be extracted from the 

background of the training photos (see Figure 5). 

Geometric/shape distortions (including changes in 

perspective and scale) and appearance distortions 

(including shifts in brightness and contrast) were carried 

out. Each instance of a traffic sign was first normalized, 

and then geometric and visual distortions were applied. 

We used L*a*b contrast normalization to standardize 

the appearance normalization, and homography between 

instance annotation points and a geometric template for 

a certain traffic-sign class to standardize the geometric 

normalization. Several classes (such as the railway 

crossing sign, direction signs with the form of an arrow, 

etc.) were exceptions, but for the vast majority of 

classes we manually generated templates. We also 

created new synthetic instances for these classes, but 

unlike before, we did not subject them to geometry 

normalization or geometric distortions. 

We followed the distribution of the training set's 

geometry and appearance variations to develop 

synthetic training examples that are as realistic as 

feasible. Both the distribution of Euler rotation angles 

(along the X, Y, and Z axes) and the distribution of 

averaged intensity values were determined for the 

training instances used in the geometry transformation. 

Using the sizes of instances with their geometry 

corrected, we also approximated the distribution of 

scales. We utilized a Gaussian mixture model to 

account for all shifts, but with just one mixture 

component (K=1) to account for geometry and 

appearance and two (K=2) to account for scale. Figure 2 

displays a number of instances of authentic, standard, 

and synthetically manufactured samples.  
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Figure 1: Sample traffic signs and their corresponding annotation masks. 

 

A histogram and its corresponding distributions for 

different distortions are depicted in Figure 3. When 

generating synthetic distortions we sampled random 

values from the corresponding distributions. However, 

variance that is twice as large as the variance in the 

observed distribution was used to increase the 

likelihood of generating larger distortions. In the 

appearance distortion the distributions were not generic 

for all classes, but instead, we used different distribution 

for each classes. We used class specific mean instead of 

mean over all categories but we still applied common 

variance calculated from all the categories. This 

guarded us from generating invalid contrast values for 

very dark/bright categories, such as gray or white 

direction signs. To emulate the real-world settings, the 

newly generated traffic-sign instances were inserted into 

the street-environment like background images. 

Background images were acquired from the subset of 

the BTS dataset [17], which contains no other traffic 

signs. At least two, and at most five, traffic signs were 

placed in a non-overlapping manner in random 

locations of each background image, avoiding the 

bottom central part where only the road is usually seen. 

With the whole augmentation process, we generated 

enough new instances to ensure each category has at 

least 200 instances. This resulted in around 30;000 new 

traffic-sign instances spread over 8775 new training 

images. 

 

IV. THE TRAFFIC-SIGN DATASET FROM THE 

DFG 

Our dataset was acquired by the DFG Consulting d.o.o. 

company for the purpose of maintaining inventory of 

traffic signs on Slovenian roads. The RGB images were 

acquired with a camera mounted on a vehicle that was 

driven through several different Slovenian 

municipalities. The image data was acquired in rural as 

well as in urban areas. Only images containing at least 

one traffic sign were selected from the vast corpus of 

collected data. Moreover, the selection was performed 

in such a way that there is usually a significant scene 

change between any pair of selected consecutive 

images. Since images were acquired for the purpose of 

maintaining traffic-sign inventory, this allowed the 

image acquisition to be performed in the day-time 

avoiding bad weather conditions  

 

 
Figure 2: Distributions of traffic-sign distortions 

computed for rotation in the top row, appearance (i.e. 

brightness) in the bottom left side and scale in the 

bottom right side. Red lines represent the Gaussian 

distributions, which are sampled when generating new 

examples. 

such as rain, snow and fog. Nevertheless, the dataset 

does include other difficult variations in the weather and 

the environment that are present in the real-world 
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environment such as: rural and city/urban landscape, 

different levels of natural occlusions and shadows, and 

various ranges of a cloudy sky and direct sunlight. 

Images taken under winter conditions with snow cover 

were also included. The dataset, termed the DFG traffic-

sign dataset1, contains a total of 6957 images with 

13;239 tightly annotated traffic-sign instances 

corresponding to 200 categories. The total number of 

instances is different for each category (see Figure 1). 

Each image contains annotations of all traffic signs 

larger than 25 pixels for any of the 200 categories in a 

tightly annotated polygon (see Figure 4). Categories in 

the dataset represent a subset of all categories from the 

corpus of raw images provided by the company; 

however, some categories in the corpus did not meet the 

necessary criteria to create a quality dataset. In 

particular, all categories in the public dataset now meet 

the following three criteria: (a) each category has a 

sufficient number of instances (at least 20 instances 

with a minimal bounding box size of 30 pixels), (b) 

each category represents a planar object and (c) each 

category contains traffic signs that have at least some 

visual consistencies. Among all categories in the DFG 

traffic-sign dataset roughly 70% of them correspond to 

traffic signs with low appearance changes, while a 

significantly larger appearance variability is present in 

the remaining 30%. Latter signs can be of variable 

aspect ratio or color and can contain various text and 

numbers. See 200 categories of traffic signs depicted in 

Figure 1. Note that the dataset contains annotations as 

small as 25 pixels. However, annotations smaller than 

30 pixels are flagged as difficult and are not considered 

neither for the training nor for the testing. We selected 

30 pixels as a minimal size based on down-sampling of 

features in Faster and Mask R-CNN, 

 

 
Fig. 3: Distribution of number of instances over 

categories in the DFG traffic-sign dataset. Horizontal 

red dashed line represents 20 instances per category, 

which we use as a cutoff point. Note, the distribution is 

shown in the logarithmic scale. 

 

which is performed 5-times and results in 32x32 pixels 

being represented by 1x1 feature pixel. A suitable train-

test split was generated to provide a sufficient number 

of samples for both the training and the test set. A 

restriction was set that 25% of traffic-sign instances for 

each category have to appear in the test set. For the 

smallest categories with only 20 instances, this ensured 

a minimum number of 15 samples for the training set 

and a minimum number of 5 samples for the test set. 

Images were assigned randomly to either the training or 

the test set. However, additional constraint mechanism 

was employed to ensure all images of the same physical 

object are always present either in the test set or in the 

training set but never in both of them at the same time. 

This was ensured by clustering images within 50 meter 

distance and assigning whole clusters to the training or 

the test set. In this way, we generated a training set with 

5254 images and a test set with 1703 images. 

 

V. EXPERIMENTAL EVALUATION 

In this section, we perform extensive evaluation of deep 

learning methods that are appropriate for the traffic-sign 

detection and recognition. We focus on evaluating two 

state-of-theart, region-proposal-based methods: Faster 

R-CNN and Mask R-CNN. We first perform evaluation 

on the existing public traffic-sign dataset to establish a 

baseline comparison with the related work. Swedish 

traffic-sign dataset (STSD) is used for this purpose. 

Then, an extensive evaluation on newly proposed DFG 

traffic-sign dataset is performed with a comprehensive 

analysis of the proposed improvements. 
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A. Implementation details 

A publicly available Caffe2-based, Python 

implementation of the Detectron [44] is used for both 

Faster and Mask RCNN2. For the Faster R-CNN, we 

employ the VGG16 [39] network with 13 convolutional 

layers and 3 fully-connected layers, while for the Mask 

R-CNN, we employ a residual 

 

 
Fig. 4: Several examples of traffic signs in the DFG traffic-sign dataset with their corresponding annotation  asks 

showing the precision of the annotation mask. 

 

network [40] with 50 convolutional layers (ResNet-50). 

The ResNet-50 architecture consists of 16 convolutional 

filters with kernel sizes of 3x3 or larger. Mask R-CNN 

also implements Feature Pyramid Network (FPN) [42], 

which collects features from different layers of the 

network to capture the information from small objects, 

which may be removed in higher layers due to down-

sampling. Both networks are initialized with a model 

pre-trained on ImageNet as provided by [44]. We also 

experimented with larger variant of the residual network 

using 

101 layers (ResNet-101), but performance did not 

improve compared to ResNet-50. We therefore focused 

only on the ResNet-50, which at the same time is faster 

with half the layers of ResNet-101. Both methods use 

similar learning hyper-parameters. A learning rate of 

0:001 is used for Faster R-CNN with a weight decay of 

0:0005, while a learning rate of 0:0025 and a weight 

decay of 0:0001 is used for Mask R-CNN. Both 

approaches also use momentum of 0:9. The same 

hyperparameters are used in all experiments. Note that 

the same hyper-parameters are used in [44] to pre-train 

the model on ImageNet dataset. Both methods are 

trained end-to-end with simultaneous learning of both 

the region proposal network and the classification 

network. We learn both methods for 95 epochs and 

reduce the learning rate by a factor of 10 at the 50th and 

75th epoch. We use two images per batch per GPU and 

train on STSD with 2 GPUs and on DFG dataset with 4 

GPUs. This resulted in effectively using 4 images per 

batch on the STSD and 8 images per batch on the DFG 

dataset. 

B. Performance metrics 

Several different metrics are used in this study to 

evaluate the proposed approach. As a primary metric, 

we report mean average precision (mAP), which is 

commonly used in the evaluation of visual object 

detectors. We use two variants of the mAP: (i) mAP50, 

based on the PASCAL visual object challenge [45], and 

(ii) mAP50:95, based on the COCO challenge [46]. 

Both metrics define a minimal intersectionover- union 

(IoU) overlap with the groundtruth region for a 

detection to be considered as a true positive, and both 

compute 

average precision (AP) as the area under the precision-

recall curve to accurately capture the trade-off between 

the miss rate and the false-positive rate.  
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Table 1. Results of Indian Traffic Sign detection. 

Traffic sign R-CNN 

Precision (%) Recall (%) 

Speed 30 100 100 

Speed 40    100 98.4 

Speed 60 99.7 97.5 

Speed 70 100 100 

Speed 80 99 91.2 

No horn 100 90.5 

Warning 98.9 98.1 

Average 99.6 96.75 

 

Table 2. Precision and Recall % comparison for Indian Traffic Sign detection. 

Traffic sign Fast R-CNN Mask RCNN R-CNN 

Prec 

(%) 

Rec 

(%) 

Prec 

(%) 

Rec 

(%) 

Prec 

(%) 

Rec 

(%) 

Sign 40 92.1 92.5 98 96.5 98.7 97.6 

Sign 60 91.3 97.1 94.5 97.3 99.5 98.1 

Sign 70 92.4 92.4 81.4 99.1 88.7 98.5 

Go left 99.1 94.2 99.5 92.4 98.6 93.6 

Go right 98.9 95.1 94.6 95.5 96.3 95.1 

warning 81.2 91.5 96.5 96.5 98.7 98.5 

Speed 80 96.4 95.2 96.8 96.8 99.1 95.9 

Average 93.05 94 94.4 96.7 97.08 96.75 

Note: Prec – Precision, Rec – Recall. 

VI. RESULT ANALYSIS 

In this section, we demonstrate the performance of our 

approach on traffic-sign detection with additional 

qualitative analysis. We focus only on the best 

performing model, namely Mask R-CNN using ResNet-

50 with our adaptations and data augmentation. All 

results in this section are reported on the test set of the 

DFG traffic-sign dataset. A per-class distribution of 

AP50 is depicted in Figure 2. This graph clearly shows 

that a large number of traffic-sign classes (108) are 

detected and recognized with average precision of 

100%, i.e. with no errors. For the remaining categories 

our approach still achieved AP of above 90% on 60 of 

them, and above 80% on 23 of them. Figure 3 further 
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shows the traffic-sign classes with their corresponding 

AP50 sorted by their AP50 in descending order. The 

best performing categories at the top of the list are 

mostly traffic signs with low intra-category variations, 

i.e. with fixed sizes and fixed appearance. This includes 

various triangular danger signs, circular prohibitory 

signs, speed limit signs, rectangular information signs, 

etc. On the other hand, the worst performing signs at the 

bottom are traffic signs with a large variation of their 

sizes/aspect ratios as well as with a large intra-category 

variations, i.e., their content significantly varies from 

instance to instance.  

 

 
Fig. 5: DFG traffic-sign categories sorted by average precision (AP50) calculated when using Mask R-CNN ResNet-50 

with our adaptations and data augmentation. 

 

This includes particularly complex class of mirrors 

(both rectangular and round mirrors), speed feedback 

signs, various direction signs and signs marking the 

start or the end of the towns. Traffic signs with high 

intra-category variations and good performance: Figure 

6 reveals several traffic signs with extremely good 

detection rate despite having large intra-category 

variations in their appearance. Samples for three such 

traffic sign categories are depicted in Figure 6, namely 

they are: (i) large-direction-with-separate-lanes, (ii) left-

arrow-shaped direction and (iii) right-gray-direction. 

Each row in this figure depicts one category with eight 

instances. For clarity we display only the relevant part 

of the image. True detections are shown in green, false 

detections in red and missing detections in magenta. 

Examples are also sorted by their descending detection 

score from left-to-right. Therefore if true (green) and 

false (red) positive detections can be successfully 

separated with a threshold then false detections can be 

trivially eliminated by setting an appropriate detection 

threshold. Note that this is important when looking at 

false detections as many of them are not problematic at 

all. 

 

 
Figure  6: Examples of complex traffic signs with variable content and good detection on the test set of the DFG traffic-

signdataset. True positives are depicted in green, false positives in red, and missing detections (false negatives) in 

magenta. (*) 
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Note, the last detection in the first row is not false since actual traffic sign was not annotated due to high occlusion. 

When focusing on the large-direction-with-separate-

lanes traffic-sign category in the first row in Figure 6, 

an extremely good performance is clearly shown for the 

traffic signs that have quite significant variation in their 

content as well as large variation in their sizes and 

aspect ratios. The first image in the top row depicts a 

good example of this as the traffic sign was detected 

with a high score despite having completely different 

color combination than other instances of the same 

class. Several detected instances are also quite small, 

yet our approach successfully detects them. Moreover, 

the last image in the first row shows a false detection of 

a small instance; however, a close inspection reveals 

that it is a correct detection. This instance was not 

annotated in the dataset due to small size and high 

occlusion of the tree. The second row in Figure 6 

depicts detections of a left arrow- shaped-direction 

traffic sign. This category is fairly difficult to detect as 

aspect ratios vary quite significantly from instance to 

instance, mostly due to wide viewing angles, yet the 

detector did not have significant issues finding them. 

The second-to-last example in the second row is also 

significantly cropped; however, the detector is still able 

to correctly find it. Finally, detections for the right-gray-

direction traffic sign are shown in the last row in Figure 

6. Detection of this category is difficult mostly due to 

significant variation of the content. Those traffic signs 

also often appear side-by side in multiple rows which 

makes it difficult to generate the correct region 

proposal. Nevertheless, most instances have been 

correctly found. 

 

 
Figure 7: Examples of traffic signs with fixed content but poor detection on the test set of the DFG traffic-sign dataset. 

Truepositive detections are marked in green, false positives in red and missing detections (false negatives) in magenta. 

(*) Note that false detections in the first row occur due to two almost identical traffic-sign categories in the dataset (one 

with distance label below and one without). True detections with the other category detector are shown in dashed green 

line. 

 

Traffic signs with poor performance and low intra 

category variations: Next, we focus on three worst 

performing traffic signs despite having low appearance 

variation within a category, namely: (i) left-into-right-

lane-merger, (ii) train crossing and (iii) work-in-

progress. Samples are depicted in Figure 7 and are 

organized in a similar manner as in Figure 6, with eight 

examples per category in a row, sorted by their 

descending detection score. The worst results are 

achieved for the left-into-right-lanemerger traffic sign 

with the AP50 of 57%. Mask R-CNN correctly detects 

four out of five test instances, but appears to detect four 
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false traffic signs as well, as can be seen in the top row. 

However, those false detections should not be 

considered problematic as the traffic sign is identical to 

the left-into right- lane-merger sign with the only 

difference in the distance value printed below the sign. 

Since the correct category is also detected (shown with 

the dashed green line), those false detections would be 

eliminated by the across-category non maxima 

suppression, meaning that even in this case the issue is 

not as bad as it might seem. Still, such extremely minor 

differences between those two categories appear to pose 

a challenge for deep learning and point to a existing 

limitations of deep learning methods. 

 

CONCLUSION 

In this work, we have addressed the problem of 

detecting and recognizing a large number of traffic-sign 

categories for the main purpose of automating traffic-

sign inventory management. Due to a large number of 

categories with small interclass but high intra-class 

variability, we proposed detection and recognition 

utilizing an approach based on the Mask RCNN [14] 

detector. The system provides an efficient deep network 

for learning a large number of categories with an 

efficient and fast detection. We proposed several 

adaptations to Mask R-CNN that improve the learning 

capability on the domain of traffic signs. Furthermore, 

we proposed a novel data augmentation technique based 

on the distribution of geometric and appearance 

distortions. As an important contribution, we also 

present a novel dataset, termed the DFG traffic-sign 

dataset, with a large number of traffic-sign categories 

that have low inter-class and high intra-class variability. 

This datasetas been made publicly available together 

with the codefor our improvements, allowing the 

research community to make further progress on this 

problem and enabling reliable and fair comparison of 

different methods on a large-scale 

traffic-sign detection problem. We also extensively 

evaluated our proposed improvements and compared 

them against the original Faster and Mask R-CNN. Our 

evaluation on the DFG and the Swedish traffic-sign 

datasets showed that the proposed adaptations improve 

the performance of Mask R-CNN in several metrics. 

This includes improvement in the miss rate of the RPN 

network for smaller objects, improvement in the overall 

recall of the full pipeline for both small and large 

objects, as well as improvement in the overall 

performance in the mean average precision. Despite 

excellent performance of the proposed approach there is 

still room for improvement. Our analysis revealed that 

the ideal performance is still not achieved, mostly due 

to several missed detections that are being lost by the 

classification network. Future improvements should 

focus on improving this part of the system. 
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