
Journal of Chemical Health Risks 

www.jchr.org 

JCHR (2023) 13(3), 1226-1237 | ISSN:2251-6727 

 
 

 

1226 

Automated Summarization of Bug Reports to Speedup Software 

Development/Maintenance Process by Using Natural Language 

Processing (NLP) 

Syed Mohammed Furqan Ishaqui, Dr. Mohd.Abdul Bari, Dr..L.K Suresh Kumar 

PG Scholar, Department of CSE, ISL Engineering College, Hyderabad, India 

Professor,  Department of CSE , ISL Engineering College , Hyderabad, India 

Associate Professor & BOS; Department of Computer Science; UCE, Osmania University, Hyderabad, India 

 

(Received: 04 August 2023      Revised: 12 September                            Accepted: 06 October) 

 

KEYWORDS 

Software 

Development,  

Software 

Maintenance, 

Automated 

Summarization 

 

ABSTRACT:  

Developers may benefit much from bug reports as they work on new features. However, it 

might be challenging to make use of these artifacts in the given time owing to the massive size 

of bug repositories. One strategy to aid developers is to give concise summaries of these 

reports, focusing on the most relevant information. After deciding if this report is what's 

needed, you may go into the specifics. With the development of text mining tools, several 

considerable methods have been developed to produce efficient summaries for bug reports. In 

this research, we present an extractive-based technique that makes use of language embedding 

to generate summaries of bug reports. In comparison to prior state-of-the-art methods, our 

rouge-1 and rouge-2 outcomes for bug report summarization are far better. 

 

1. INTRODUCTION 

Software quality assurance is significantly impacted by 

defect correction. It's the meat and potatoes of software 

engineering's post-release support phase. The software 

engineering business has been growing rapidly in recent 

years, leading to an increase in the size and complexity 

of software systems' architecture and code bases [1]. 

This pattern causes a great deal of errors to be made 

during the creation of software programs. Developers 

should review the bug report [2] to find out how to 

address these issues. The content of the bug report, 

which includes several tags like ID, Description, and 

Impact, outlines the system's flaws. In the past, 

managers used tags to categorize problem reports before 

assigning them to the most qualified engineers to 

resolve the issues. There are too many problem 

complaints, however, to verify each one individually. In 

addition, each reporter brings their own unique set of 

skills and expertise to the table, increasing the 

likelihood that the tags they assign in the Bug Tracking 

System report will be wrong [3]. When a bug report is 

incorrectly tagged, it may not be sent to the right 

people, which may make fixing the problem more 

challenging [4, 5]. Accurate and automatic 

categorization techniques for bug reports are needed in 

the software engineering industry to lessen this effect 

and hasten the pace at which defects are fixed. Many 

scientists in recent years have investigated the 

possibility of automatically categorizing bug reports. 

Others have used textmining techniques to categorize 

problem reports, such as Antoniol et al. [6]. It 

demonstrated the effectiveness and feasibility of 

automatically classifying reports into bug and other 

sorts using training models. To identify whether a new 

bug report is legitimate, Zhou et al. [7] suggested a 

hybrid approach that combines text mining and data 

mining approaches. This technique takes into account 

the report's structural data (such as severity and priority) 

by mining the textual description alone [5]. Lamkanfj et 

al. [8] used machine learning to categorize bug reports 

as critical or noncritical. To anticipate the severity of 

the bug report, Tian et al. [9] suggested an information 
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retrieval-based closest neighbor method. They zeroed in 

on figuring out which of the five possible report 

severity levels—Blocker, Critical, Major, Minor, and 

Trivial—would be encountered. 

Furthermore, some academics worry about the accuracy 

of bug reports [10], as well as the skewed representation 

of certain groups in statistics [11, 12]. Reports are 

submitted by those who have good intentions. The 

purpose of the summary text content may be 

categorized into two types: explanation or 

recommendation, based on our examination of the 

summaries of a significant number of open source 

software bug reports. The Bug Tracking System, 

however, does not provide a "intent" label. When 

identifying reported bugs, many previous studies 

haven't taken the reporter's purpose into account, 

leading to subpar results. The strategy presented here 

takes into account the report's goals since they have an 

impact on how the report is categorized. In this context, 

"explanation" is a detailed description of the defect 

(such as a problem or its root cause) and "suggestion" 

means a proposed remedy for the deficiency. The 

following table provides instances of actual bug reports 

submitted by users in four distinct software 

environments. 

As software systems get larger and more intricate, the 

emergence of Big Code has become an increasingly 

important trend in the industry [1]. Big Code is the term 

for the massive amount of software-related artifacts that 

may be found in places like bug databases, code snippet 

collections, and online source code repositories. It's a 

treasure trove of information and wisdom that other 

researchers may use to enhance the results of their own 

work. The mission of Big Code is to provide scalable 

and efficient methods to help software developers 

evaluate, comprehend, and forecast on enormous 

codebases. By centralizing so much information in one 

place, Big Code might potentially significantly advance 

AI research and development. Advanced programming 

languages, potent machine learning methods like large 

language models (LLMs), and NLP approaches based 

on the software naturalness hypothesis are all used in 

the creation of statistical programming systems [2, 3]. 

This theory proposes that, just how NLP treats human 

natural languages, a wide variety of programming 

languages may be understood and handled by a 

computer. 

 

Table 1: Comparison of surveys on language models in software naturalness[1]. 

Title Year Focus Area 

A Survey of Machine Learning for Big Code and 

Naturalness  
2019 Big Code and Naturalness 

Software Vulnerability Detection Using Deep Neural 

Networks: A Survey  
2020 Security 

A Survey on Machine Learning Techniques for 

Source Code Analysis  
2021 Code Analysis 

Deep Security Analysis of Program Code: A 

Systematic Literature Review  
2022 Security 

A Survey on Pretrained Language Models for Neural 

Code Intelligence  
2022 

Code Summarization and 

Generation, and Translation 

Deep Learning Meets Software Engineering: A 

Survey on Pre-trained Models of Source Code  
2022 Software Engineering 
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Title Year Focus Area 

Software as Storytelling: A Systematic Literature 

Review  
2023 Storytelling 

Pre-train, Prompt, and Predict: A Systematic Survey 

of Prompting Methods in Natural Language 

Processing  

2023 Prompt-based Learning 

 

This analysis, however, is narrowed down to software-

based naturalness in its language models. In Table 1, we 

present a comprehensive comparison of previous 

assessments that have covered similar ground. 

 

2. RELATED WORK 

Software engineers are aided in their quest to repair 

bugs when reports are categorized. Manual 

categorization has become tedious and time-consuming 

due to the ever-increasing volume of problem reports. 

Automatic bug report categorization is something that 

has been studied for quite some time [18]. Some 

previous studies will be reviewed here. 

In 1992, IBM's Chillarege et al. [19] presented 

Orthogonal Defect Classification (ODC) as the first 

approach to classifying bugs. There are 13 distinct types 

(such as functions, interfaces, documents, etc.) included 

in this technique that bridges the gap between 

qualitative and quantitative approaches. Using vector 

space technology to extract characteristics and then 

training Decision Trees (DT), Naive Bayes (NB), and 

Logistic Regression (LR) classifiers to determine 

whether or not a report is a problem, Antoniol et al. [6] 

suggested an automated classification technique for bug 

reports in 2008. The results provide a categorization 

accuracy of 77% to 82% across the Mozila, Eclipse, and 

JBoss projects. To determine whether bugs are real, 

Pingclasai et al. [20] suggested a categorization scheme 

in 2013. Accuracy for HTTP-Client, Jackrabbit, and 

Lucene respectively ranged from 66% to 76%, 65% to 

77%, and 71% to 82% when they used the topic model 

of Latent Dirichlet Allocation (LDA) in conjunction 

with NB and Linear Logistic Regression (LLR) 

classifiers. Similarly, kukkar et al. [13] used a hybrid 

approach that incorporates TM, NLP, and ML 

technologies to determine if the report is a problem or 

not in 2019. On five distinct data sets (Mozilla, Eclipse, 

JBoss, Firefox, OpenFOAM), they evaluated the 

efficacy of Term Frequency- Inverse Document 

Frequency (TF-IDF), feature selection, and K-NN 

classifiers. Experiments reveal that the K-NN 

classifier's performance varies among datasets, with an 

F-measure of between 78% and 96%. Scientists also 

categorize the severity of reported bugs. In 2008, 

Menzies et al. [21] introduced an innovative automated 

approach dubbed SERVERS. This technique utilizes 

TF-IDF, InfoGain, and Rule Learning to categorize the 

severity of reported bugs into five levels, from highest 

to lowest. From a total of 14 characteristics included in 

the bug report for serious and non-serious 

categorization, only 5 were considered legitimate by 

Sari et al. [22] in 2011. They are "component," 

"qa_contact," "summary," and "cc_list," respectively. 

When used together, they can improve the SVM 

model's accuracy to 99.83%. Improved REP (i.e. REP 

theme) and K-NN method were used by Zhang et al. 

[23] to find comparable bug reports from the past, 

extract characteristics to forecast problem severity, and 

categorize reported issues as Blocker, Trivial, Critical, 

Minor, or Major. The results demonstrate that their 

suggested approach may successfully enhance the 

precision with which the severity of bug reports can be 

predicted. In 2019, Kukkar et al. [24] suggested a Deep 

Learning-based categorization approach for bug reports 

since they felt that existing Machine Learning 

classifiers were unable to capture certain potentially 

crucial information. To address the challenge of 

predicting the relative severity of many bug reports, the 

model employs a Convolutional Neural Network 

(CNN), a Random Forest, and a Boosting algorithm. 

The average accuracy across their five open source 

projects is 96.34 percent, thus their efforts have paid 

off. 

Researchers have suggested a wide variety of 

categorization schemes, not only based on bugs or 

severity. In 2017, Du et al. [25] created an automated 
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categorization system based on word2vec that separated 

bug reports into Bug/Non-Bug, BOH/MAN, 

ARB/NAM, and NAM/ARB categories according to 

four granularities. Tan et al. [26] from 2014 thought that 

software systems are intimately involved in semantic, 

security, and concurrency issues. On the basis of these 

hypotheses, they analyzed the frequency with which 

each category occurred in popular open source projects 

like Apache, Mozilla, and Linux and used machine 

learning to automatically categorize bug reports into the 

three categories listed above. Approximately 70% is the 

mean F-measure. Catolino et al. [27] recently defined a 

new bug report classification pattern for 2019 that 

includes 9 defect types (Configuration problem, 

Network problem, Database related, GUI related, 

Performance problem, Permission/deprecation problem, 

Security problem, Program anomaly problem, Test code 

related). Catolino et al.'s approach of categorizing bug 

reports is more explicit and thorough than that of Tan et 

al. [26]. The automated model they developed also had 

better results in terms of F-Measure (64%) and AUC-

ROC (74%). 

From this and other similar studies, it is clear that many 

academics have made significant progress toward an 

automatically accurate categorization of bug reports. In 

this paper, we build on previous studies to automatically 

categorize bug reports while also taking into account the 

reporter's purpose. Boosting this variable, we think, will 

lead to better categorization results. 

 

3. METHODOLOGY 

 

In this subsection, we describe the proposed bug report 

categorization scheme in detail. Figure 1 depicts this 

structure. Bug reports are gathered from the public 

repository, carefully annotated, and then pre-processed. 

Then, we extract features using the BERT and TF-IDF 

techniques. In addition, the frequency feature is 

normalized and combined with the text feature. The 

characteristics are then sent into five different classifiers 

(K-NN, NB, LR, SVM, and RF). We conclude by 

distinguishing between bug reports and non-bug reports. 

 

Figure 1: Framework 
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Language Models on Software Naturalness 

Some of the most effective language models based on 

transformers are discussed here. Figure 2 shows how 

LLMs have changed over time starting in 2018.   

 

Figure 2: Language Models 

Table 3: Summary of language models using 

transformers [1] 

Model Type 
AI-Assisted 

Programming Tasks 

Encoder-

only 
Understanding 

Code Summarization, 

Code Translation 

Decoder-

only 
Generation 

Code Generation, 

Code Completion 

Encoder–

decoder 

Generation and 

understanding 

Code Generation, Code 

Refinement, Defect 

Detection, 

Clone Detection 

 

Sequence-to-sequence models, also known as encoder-

decoder models , use both halves of the transformer 

design . At each level, the attention layers in the 

encoder have access to all words in the input phrase, 

whereas the attention layers in the decoder have access 

only to the words preceding a specific word in the input. 

Code generation, code refinement, defect detection, and 

clone detection are all examples of AI-assisted 

programming tasks that benefit from sequence-to-

sequence models like BART , T5 (Text-to-Text 

Transfer Transformer) , and TreeGen. 

 

Encoder-only models, also known as autoencoders, rely 

only on an encoder network to encode data. They are 

widely used in unsupervised learning applications, 

especially those involving dimensionality reduction and 

anomaly detection in natural language processing. In the 

past, code embedding methods like Neural Network 

Language Model , Code2Vec , ELMo , TextRank , and 

GGNN  may be used to derive the representation from 

the input data. The BERT  and RoBERTa  are used for 

understanding tasks in AI-assisted programming to 

learn usable representations of data in an unsupervised 

way; these representations may then be utilized as 

features in downstream tasks like code translation and 

code summarization. 

Natural language processing tasks including GPT-2 , 

GPT-3 , GPT-J , Reformer , and GPT-Neo  employ 

decoder-only models, also known as autoregressive 

models, to predict the next token output given all prior 

tokens. Only a decoder network, which predicts the next 

token based on the distribution of previous tokens, is 

used to produce any text at all. However, jobs that need 

a more nuanced understanding of the input-output 

sequence connection may not fare as well with these 

models, despite their simplicity and efficiency. Despite 

this, they have shown outstanding performance in a 

number of benchmarks and continue to see widespread 

usage in a variety of natural language processing 

applications for AI-assisted programming, such as code 

generation and code completion. 

Measurement of Language Models with Entropy 

By performing a maximum-likelihood estimation 

(MLE) of the parameter of a properly selected 

parametric distribution given a corpus C of programs 

CS, an estimated language model is produced, known as 
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a pre-trained language model . In Section 2.2, we go out 

the steps involved. Given the above context, the 

programming language defines the tokenization of the 

code to estimate the probability distribution of code 

tokens. This data is then put to use in software 

engineering choices and forecasts. The models are 

educated to estimate the likelihood of subsequent words 

in a sequence given the words that came before them . 

N-gram models, which have been utilized extensively 

for estimating the probability distribution of words or 

characters in a text sequence , are often employed in the 

construction of the language model. This was the 

accepted strategy until the advent of RNN-based 

distributed word vectors and linguistic representations . 

N-gram models can predict the probability of a token 

following another token given a system s with a series 

of tokens W1,W2,...Wn. By multiplying a string of 

conditional probabilities, the model may arrive at an 

estimate of the likelihood of 

s:p(s)=p(W1)p(W2|a1)p(W3|W1W2)…p(Wn|W1…Wn

−1). 

Word or character co-occurrence patterns in a text may 

be captured by using an N-gram model. A mathematical 

representation of an N-gram model is a collection of N-

grams, where each N-gram is a tuple of n elements and 

their respective probabilities. The MLE can estimate the 

likelihood of an N-gram given its frequency of 

occurrence in a specific training corpus. Similarly, this 

presumes a Markov property, whereby the occurrences 

of tokens are affected by just a small prefix length of n. 

For instance, in a model with three grams (n=3): 

p(Wi|W1…Wi−1)≅p(Wi|Wi−2Wi−1).   

 (3) 

The probability of a word Wi given its preceding 

word Wi−1 can be estimated: 

p(Wi|Wi−1)=count(Wi−1,Wi)/count(Wi−1),  

 (4) 

where count(Wi1,Wi) is the total number of occurrences 

of the 3-gram (Wi1,Wi) in the training corpus, and 

count(Wi1) is the total number of occurrences of the 

word Wi1. Recent advances in natural language 

processing may be directly attributed to the 

effectiveness of these models. The effectiveness of the 

method is determined by the accuracy with which the 

language model represents the target data's patterns and 

structures. Many studies have been conducted to 

enhance the quality of language models for various 

tasks by expanding training methods, enlarging training 

corpora, and refining assessment measures. 

 

4. EXPERIMENTS 

This study uses a split of 8:2 across the training and test 

sets to isolate features from the report summary, other 

fields (product, component, reporter, severity), and 

intent. We superimpose and merge these three 

characteristics in succession, and then feed them into 

five different machine learning classifiers (K-NN, NB, 

SVM, LR, RF) to see which one works best with the 

suggested approach. 

These scientific inquiries were answered by the 

experiments: 

Does the automated categorization of bug reports 

increase in accuracy if the purpose of the report is also 

included? Question 2: How well does our strategy work 

with five distinct classifiers? 

 

4.1 Dataset 

For this research, we gathered a total of 2,230 bug 

reports from Bugzilla, with contributions coming from 

Apache [14], Eclipse [15], Gentoo [16], and Mozilla 

[17]. We only choose reports with a "FIXED" 

resolution or a "RESOLVED" status. And then get the 

product, component, reporter, severity, and summary 

labels out of them. We used this information to 

manually categorize the purpose, source, and nature of 

these reports. information statistics are shown in Table 

3. 

 

Table 3. Type statistics of our dataset 

Ecosystem Total Bug Non-Bug 

Apache 446 296 150 

Eclipse 658 419 239 

Gentoo 511 294 217 

Mozilla 615 425 190 
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4.3 Results 

Does Including the Reason for the Report Help 

Automatically Classify Bug Reports? 

Table 4 displays the average accuracy of the ten-fold 

cross-validation, which we employ to train the classifier 

using three different kinds of features that are fused and 

overlaid successively. Summary text (represented by 

Text) reflects the written content of the bug report, 

whereas word frequency (represented by Freq) indicates 

the content of the other fields (product, component, 

reporter, severity). The table's numbers are expressed as 

percentages. Our proposed approach combines text 

frequency analysis with intent. 

 

Table 4. Average accuracy of all datasets[1] 

 

Ecosystem                                     Features                                                                           Classifier 

                                                                                                                     K-NN       NB             LR          SVM            RF 

Apache                                        Text                                                       60.5           65.5            65.6         66.4            63.0 

                                              Text+Freq                                                   70.6           80.0           70.9          70.9            85.7 

                                          Text+Freq+Intention                                      90.4          89.2            90.8          91.0            91.7 

Eclipse                                         Text                                                     61.5          63.7            65.0         64.6            61.0 

                                            Text+Freq                                                     66.4         66.1            65.2          64.4           73.1 

                                         Text+Freq+Intention                                       83.9          84.0            84.8          84.8           84.8 

Gentoo                                       Text                                                       67.7           61.8            57.3          62.8           67.3 

                                                 Text+Freq                                               83.2           73.6            71.2          72.8           87.3 

                                          Text+Freq+Intention                                     91.8            85.1            86.1          87.7          94.5 

Mozilla                                        Text                                                    65.2            66.8            65.0          69.4          67.5 

                                                  Text+Freq                                             75.3            70.4            72.0          72.3          78.2 

                                          Text+Freq+Intention                                     89.9            87.5            87.8          88.0         87.8 

How Effective Is Our Suggested Approach Across 

Five Distinct Classifiers? 

Using the five classifiers shown in Figs. 3, 4, 5, 6, and 

7, we evaluate the efficacy of our proposed technique, 

which integrates text, frequency, and intention variables 

(Text+Freq+Intention). Data origin is shown along the 

x-axis, and the mean of 10 independent validations is 

shown along the y-axis. 

 

 
K-NN classifier performance 
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NB classifier performance 

 

SVM classifier performance 

 

LR classifier performance 
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RF classifier performance 

 

5. DISCUSSIONS 

5.1 Experiment Analysis 

We test our strategy on the Apache, Eclipse, Gentoo, 

and Mozilla datasets, combining the suggested 

methodology with five different machine learning 

classifiers. Table 4 summarizes the typical Accuracy 

achieved by various data sets while using various 

classifiers. The highest percentages among these 

collections are as follows: 91.7% for the Apache data 

set; 84.8% for the Eclipse data set; 94.5% for the 

Gentoo collection; and 89.9% for the Mozilla 

collection. Table 4 shows that our suggested addition of 

the intention element of the report greatly increased the 

accuracy of the data sets of the four ecosystems on the 

five classifiers, compared to only examining the text 

field of the report. We analysed the distribution of 

intention characteristics and their connection with labels 

(i.e., bug or non-bug) in the experimental dataset to 

better understand how adding the binary feature of 

reporting intention might boost classification 

performance. 

 

6. CONCLUSIONS AND FUTURE WORK 

 

In this research, we present a novel automated 

categorization strategy for bug reports, with the goal of 

better understanding the report's motivation from its 

textual content. Our method integrates tools from the 

fields of Text Mining, NLP, and ML. To begin building 

the data set necessary for the study, we gathered 2,230 

reports from the bug repository across the four 

ecosystems (Apache, Eclipse, Gentoo, Mozilla). Then, 

we supplement the report's purpose characteristics with 

the text features extracted from the summary field and 

the word frequency features of the other fields. Then, 

we feed this merged set of features through one of five 

classifiers (K-NN, NB, SVM, LF, RF). The last step is 

to distinguish between legitimate bugs and false 

positives while reviewing reported issues. The findings 

demonstrate that our suggested enhancements to the 

report's intention features may greatly boost the 

efficiency of bug report classification compared to 

merely extracting text information features for 

classification. In the future, we want to test the 

suggested method on other open-source projects and 

integrate Deep Learning tools to enhance the efficiency 

with which bug reports may be automatically classified. 
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