
Journal of Chemical Health Risks

www.jchr.org

JCHR (2023) 13(3), 1226-1237 | ISSN:2251-6727

1226

Automated Summarization of Bug Reports to Speedup Software

Development/Maintenance Process by Using Natural Language

Processing (NLP)

Syed Mohammed Furqan Ishaqui, Dr. Mohd.Abdul Bari, Dr..L.K Suresh Kumar

PG Scholar, Department of CSE, ISL Engineering College, Hyderabad, India

Professor, Department of CSE , ISL Engineering College , Hyderabad, India

Associate Professor & BOS; Department of Computer Science; UCE, Osmania University, Hyderabad, India

(Received: 04 August 2023 Revised: 12 September Accepted: 06 October)

KEYWORDS

Software

Development,

Software

Maintenance,

Automated

Summarization

ABSTRACT:

Developers may benefit much from bug reports as they work on new features. However, it

might be challenging to make use of these artifacts in the given time owing to the massive size

of bug repositories. One strategy to aid developers is to give concise summaries of these

reports, focusing on the most relevant information. After deciding if this report is what's

needed, you may go into the specifics. With the development of text mining tools, several

considerable methods have been developed to produce efficient summaries for bug reports. In

this research, we present an extractive-based technique that makes use of language embedding

to generate summaries of bug reports. In comparison to prior state-of-the-art methods, our

rouge-1 and rouge-2 outcomes for bug report summarization are far better.

1. INTRODUCTION

Software quality assurance is significantly impacted by

defect correction. It's the meat and potatoes of software

engineering's post-release support phase. The software

engineering business has been growing rapidly in recent

years, leading to an increase in the size and complexity

of software systems' architecture and code bases [1].

This pattern causes a great deal of errors to be made

during the creation of software programs. Developers

should review the bug report [2] to find out how to

address these issues. The content of the bug report,

which includes several tags like ID, Description, and

Impact, outlines the system's flaws. In the past,

managers used tags to categorize problem reports before

assigning them to the most qualified engineers to

resolve the issues. There are too many problem

complaints, however, to verify each one individually. In

addition, each reporter brings their own unique set of

skills and expertise to the table, increasing the

likelihood that the tags they assign in the Bug Tracking

System report will be wrong [3]. When a bug report is

incorrectly tagged, it may not be sent to the right

people, which may make fixing the problem more

challenging [4, 5]. Accurate and automatic

categorization techniques for bug reports are needed in

the software engineering industry to lessen this effect

and hasten the pace at which defects are fixed. Many

scientists in recent years have investigated the

possibility of automatically categorizing bug reports.

Others have used textmining techniques to categorize

problem reports, such as Antoniol et al. [6]. It

demonstrated the effectiveness and feasibility of

automatically classifying reports into bug and other

sorts using training models. To identify whether a new

bug report is legitimate, Zhou et al. [7] suggested a

hybrid approach that combines text mining and data

mining approaches. This technique takes into account

the report's structural data (such as severity and priority)

by mining the textual description alone [5]. Lamkanfj et

al. [8] used machine learning to categorize bug reports

as critical or noncritical. To anticipate the severity of

the bug report, Tian et al. [9] suggested an information

http://www.jchr.org/

Journal of Chemical Health Risks

www.jchr.org

JCHR (2023) 13(3), 1226-1237 | ISSN:2251-6727

1227

retrieval-based closest neighbor method. They zeroed in

on figuring out which of the five possible report

severity levels—Blocker, Critical, Major, Minor, and

Trivial—would be encountered.

Furthermore, some academics worry about the accuracy

of bug reports [10], as well as the skewed representation

of certain groups in statistics [11, 12]. Reports are

submitted by those who have good intentions. The

purpose of the summary text content may be

categorized into two types: explanation or

recommendation, based on our examination of the

summaries of a significant number of open source

software bug reports. The Bug Tracking System,

however, does not provide a "intent" label. When

identifying reported bugs, many previous studies

haven't taken the reporter's purpose into account,

leading to subpar results. The strategy presented here

takes into account the report's goals since they have an

impact on how the report is categorized. In this context,

"explanation" is a detailed description of the defect

(such as a problem or its root cause) and "suggestion"

means a proposed remedy for the deficiency. The

following table provides instances of actual bug reports

submitted by users in four distinct software

environments.

As software systems get larger and more intricate, the

emergence of Big Code has become an increasingly

important trend in the industry [1]. Big Code is the term

for the massive amount of software-related artifacts that

may be found in places like bug databases, code snippet

collections, and online source code repositories. It's a

treasure trove of information and wisdom that other

researchers may use to enhance the results of their own

work. The mission of Big Code is to provide scalable

and efficient methods to help software developers

evaluate, comprehend, and forecast on enormous

codebases. By centralizing so much information in one

place, Big Code might potentially significantly advance

AI research and development. Advanced programming

languages, potent machine learning methods like large

language models (LLMs), and NLP approaches based

on the software naturalness hypothesis are all used in

the creation of statistical programming systems [2, 3].

This theory proposes that, just how NLP treats human

natural languages, a wide variety of programming

languages may be understood and handled by a

computer.

Table 1: Comparison of surveys on language models in software naturalness[1].

Title Year Focus Area

A Survey of Machine Learning for Big Code and

Naturalness
2019 Big Code and Naturalness

Software Vulnerability Detection Using Deep Neural

Networks: A Survey
2020 Security

A Survey on Machine Learning Techniques for

Source Code Analysis
2021 Code Analysis

Deep Security Analysis of Program Code: A

Systematic Literature Review
2022 Security

A Survey on Pretrained Language Models for Neural

Code Intelligence
2022

Code Summarization and

Generation, and Translation

Deep Learning Meets Software Engineering: A

Survey on Pre-trained Models of Source Code
2022 Software Engineering

http://www.jchr.org/

Journal of Chemical Health Risks

www.jchr.org

JCHR (2023) 13(3), 1226-1237 | ISSN:2251-6727

1228

Title Year Focus Area

Software as Storytelling: A Systematic Literature

Review
2023 Storytelling

Pre-train, Prompt, and Predict: A Systematic Survey

of Prompting Methods in Natural Language

Processing

2023 Prompt-based Learning

This analysis, however, is narrowed down to software-

based naturalness in its language models. In Table 1, we

present a comprehensive comparison of previous

assessments that have covered similar ground.

2. RELATED WORK

Software engineers are aided in their quest to repair

bugs when reports are categorized. Manual

categorization has become tedious and time-consuming

due to the ever-increasing volume of problem reports.

Automatic bug report categorization is something that

has been studied for quite some time [18]. Some

previous studies will be reviewed here.

In 1992, IBM's Chillarege et al. [19] presented

Orthogonal Defect Classification (ODC) as the first

approach to classifying bugs. There are 13 distinct types

(such as functions, interfaces, documents, etc.) included

in this technique that bridges the gap between

qualitative and quantitative approaches. Using vector

space technology to extract characteristics and then

training Decision Trees (DT), Naive Bayes (NB), and

Logistic Regression (LR) classifiers to determine

whether or not a report is a problem, Antoniol et al. [6]

suggested an automated classification technique for bug

reports in 2008. The results provide a categorization

accuracy of 77% to 82% across the Mozila, Eclipse, and

JBoss projects. To determine whether bugs are real,

Pingclasai et al. [20] suggested a categorization scheme

in 2013. Accuracy for HTTP-Client, Jackrabbit, and

Lucene respectively ranged from 66% to 76%, 65% to

77%, and 71% to 82% when they used the topic model

of Latent Dirichlet Allocation (LDA) in conjunction

with NB and Linear Logistic Regression (LLR)

classifiers. Similarly, kukkar et al. [13] used a hybrid

approach that incorporates TM, NLP, and ML

technologies to determine if the report is a problem or

not in 2019. On five distinct data sets (Mozilla, Eclipse,

JBoss, Firefox, OpenFOAM), they evaluated the

efficacy of Term Frequency- Inverse Document

Frequency (TF-IDF), feature selection, and K-NN

classifiers. Experiments reveal that the K-NN

classifier's performance varies among datasets, with an

F-measure of between 78% and 96%. Scientists also

categorize the severity of reported bugs. In 2008,

Menzies et al. [21] introduced an innovative automated

approach dubbed SERVERS. This technique utilizes

TF-IDF, InfoGain, and Rule Learning to categorize the

severity of reported bugs into five levels, from highest

to lowest. From a total of 14 characteristics included in

the bug report for serious and non-serious

categorization, only 5 were considered legitimate by

Sari et al. [22] in 2011. They are "component,"

"qa_contact," "summary," and "cc_list," respectively.

When used together, they can improve the SVM

model's accuracy to 99.83%. Improved REP (i.e. REP

theme) and K-NN method were used by Zhang et al.

[23] to find comparable bug reports from the past,

extract characteristics to forecast problem severity, and

categorize reported issues as Blocker, Trivial, Critical,

Minor, or Major. The results demonstrate that their

suggested approach may successfully enhance the

precision with which the severity of bug reports can be

predicted. In 2019, Kukkar et al. [24] suggested a Deep

Learning-based categorization approach for bug reports

since they felt that existing Machine Learning

classifiers were unable to capture certain potentially

crucial information. To address the challenge of

predicting the relative severity of many bug reports, the

model employs a Convolutional Neural Network

(CNN), a Random Forest, and a Boosting algorithm.

The average accuracy across their five open source

projects is 96.34 percent, thus their efforts have paid

off.

Researchers have suggested a wide variety of

categorization schemes, not only based on bugs or

severity. In 2017, Du et al. [25] created an automated

http://www.jchr.org/

Journal of Chemical Health Risks

www.jchr.org

JCHR (2023) 13(3), 1226-1237 | ISSN:2251-6727

1229

categorization system based on word2vec that separated

bug reports into Bug/Non-Bug, BOH/MAN,

ARB/NAM, and NAM/ARB categories according to

four granularities. Tan et al. [26] from 2014 thought that

software systems are intimately involved in semantic,

security, and concurrency issues. On the basis of these

hypotheses, they analyzed the frequency with which

each category occurred in popular open source projects

like Apache, Mozilla, and Linux and used machine

learning to automatically categorize bug reports into the

three categories listed above. Approximately 70% is the

mean F-measure. Catolino et al. [27] recently defined a

new bug report classification pattern for 2019 that

includes 9 defect types (Configuration problem,

Network problem, Database related, GUI related,

Performance problem, Permission/deprecation problem,

Security problem, Program anomaly problem, Test code

related). Catolino et al.'s approach of categorizing bug

reports is more explicit and thorough than that of Tan et

al. [26]. The automated model they developed also had

better results in terms of F-Measure (64%) and AUC-

ROC (74%).

From this and other similar studies, it is clear that many

academics have made significant progress toward an

automatically accurate categorization of bug reports. In

this paper, we build on previous studies to automatically

categorize bug reports while also taking into account the

reporter's purpose. Boosting this variable, we think, will

lead to better categorization results.

3. METHODOLOGY

In this subsection, we describe the proposed bug report

categorization scheme in detail. Figure 1 depicts this

structure. Bug reports are gathered from the public

repository, carefully annotated, and then pre-processed.

Then, we extract features using the BERT and TF-IDF

techniques. In addition, the frequency feature is

normalized and combined with the text feature. The

characteristics are then sent into five different classifiers

(K-NN, NB, LR, SVM, and RF). We conclude by

distinguishing between bug reports and non-bug reports.

Figure 1: Framework

http://www.jchr.org/

Journal of Chemical Health Risks

www.jchr.org

JCHR (2023) 13(3), 1226-1237 | ISSN:2251-6727

1230

Language Models on Software Naturalness

Some of the most effective language models based on

transformers are discussed here. Figure 2 shows how

LLMs have changed over time starting in 2018.

Figure 2: Language Models

Table 3: Summary of language models using

transformers [1]

Model Type
AI-Assisted

Programming Tasks

Encoder-

only
Understanding

Code Summarization,

Code Translation

Decoder-

only
Generation

Code Generation,

Code Completion

Encoder–

decoder

Generation and

understanding

Code Generation, Code

Refinement, Defect

Detection,

Clone Detection

Sequence-to-sequence models, also known as encoder-

decoder models , use both halves of the transformer

design . At each level, the attention layers in the

encoder have access to all words in the input phrase,

whereas the attention layers in the decoder have access

only to the words preceding a specific word in the input.

Code generation, code refinement, defect detection, and

clone detection are all examples of AI-assisted

programming tasks that benefit from sequence-to-

sequence models like BART , T5 (Text-to-Text

Transfer Transformer) , and TreeGen.

Encoder-only models, also known as autoencoders, rely

only on an encoder network to encode data. They are

widely used in unsupervised learning applications,

especially those involving dimensionality reduction and

anomaly detection in natural language processing. In the

past, code embedding methods like Neural Network

Language Model , Code2Vec , ELMo , TextRank , and

GGNN may be used to derive the representation from

the input data. The BERT and RoBERTa are used for

understanding tasks in AI-assisted programming to

learn usable representations of data in an unsupervised

way; these representations may then be utilized as

features in downstream tasks like code translation and

code summarization.

Natural language processing tasks including GPT-2 ,

GPT-3 , GPT-J , Reformer , and GPT-Neo employ

decoder-only models, also known as autoregressive

models, to predict the next token output given all prior

tokens. Only a decoder network, which predicts the next

token based on the distribution of previous tokens, is

used to produce any text at all. However, jobs that need

a more nuanced understanding of the input-output

sequence connection may not fare as well with these

models, despite their simplicity and efficiency. Despite

this, they have shown outstanding performance in a

number of benchmarks and continue to see widespread

usage in a variety of natural language processing

applications for AI-assisted programming, such as code

generation and code completion.

Measurement of Language Models with Entropy

By performing a maximum-likelihood estimation

(MLE) of the parameter of a properly selected

parametric distribution given a corpus C of programs

CS, an estimated language model is produced, known as

http://www.jchr.org/

Journal of Chemical Health Risks

www.jchr.org

JCHR (2023) 13(3), 1226-1237 | ISSN:2251-6727

1231

a pre-trained language model . In Section 2.2, we go out

the steps involved. Given the above context, the

programming language defines the tokenization of the

code to estimate the probability distribution of code

tokens. This data is then put to use in software

engineering choices and forecasts. The models are

educated to estimate the likelihood of subsequent words

in a sequence given the words that came before them .

N-gram models, which have been utilized extensively

for estimating the probability distribution of words or

characters in a text sequence , are often employed in the

construction of the language model. This was the

accepted strategy until the advent of RNN-based

distributed word vectors and linguistic representations .

N-gram models can predict the probability of a token

following another token given a system s with a series

of tokens W1,W2,...Wn. By multiplying a string of

conditional probabilities, the model may arrive at an

estimate of the likelihood of

s:p(s)=p(W1)p(W2|a1)p(W3|W1W2)…p(Wn|W1…Wn

−1).

Word or character co-occurrence patterns in a text may

be captured by using an N-gram model. A mathematical

representation of an N-gram model is a collection of N-

grams, where each N-gram is a tuple of n elements and

their respective probabilities. The MLE can estimate the

likelihood of an N-gram given its frequency of

occurrence in a specific training corpus. Similarly, this

presumes a Markov property, whereby the occurrences

of tokens are affected by just a small prefix length of n.

For instance, in a model with three grams (n=3):

p(Wi|W1…Wi−1)≅p(Wi|Wi−2Wi−1).

 (3)

The probability of a word Wi given its preceding

word Wi−1 can be estimated:

p(Wi|Wi−1)=count(Wi−1,Wi)/count(Wi−1),

 (4)

where count(Wi1,Wi) is the total number of occurrences

of the 3-gram (Wi1,Wi) in the training corpus, and

count(Wi1) is the total number of occurrences of the

word Wi1. Recent advances in natural language

processing may be directly attributed to the

effectiveness of these models. The effectiveness of the

method is determined by the accuracy with which the

language model represents the target data's patterns and

structures. Many studies have been conducted to

enhance the quality of language models for various

tasks by expanding training methods, enlarging training

corpora, and refining assessment measures.

4. EXPERIMENTS

This study uses a split of 8:2 across the training and test

sets to isolate features from the report summary, other

fields (product, component, reporter, severity), and

intent. We superimpose and merge these three

characteristics in succession, and then feed them into

five different machine learning classifiers (K-NN, NB,

SVM, LR, RF) to see which one works best with the

suggested approach.

These scientific inquiries were answered by the

experiments:

Does the automated categorization of bug reports

increase in accuracy if the purpose of the report is also

included? Question 2: How well does our strategy work

with five distinct classifiers?

4.1 Dataset

For this research, we gathered a total of 2,230 bug

reports from Bugzilla, with contributions coming from

Apache [14], Eclipse [15], Gentoo [16], and Mozilla

[17]. We only choose reports with a "FIXED"

resolution or a "RESOLVED" status. And then get the

product, component, reporter, severity, and summary

labels out of them. We used this information to

manually categorize the purpose, source, and nature of

these reports. information statistics are shown in Table

3.

Table 3. Type statistics of our dataset

Ecosystem Total Bug Non-Bug

Apache 446 296 150

Eclipse 658 419 239

Gentoo 511 294 217

Mozilla 615 425 190

http://www.jchr.org/

Journal of Chemical Health Risks

www.jchr.org

JCHR (2023) 13(3), 1226-1237 | ISSN:2251-6727

1232

4.3 Results

Does Including the Reason for the Report Help

Automatically Classify Bug Reports?

Table 4 displays the average accuracy of the ten-fold

cross-validation, which we employ to train the classifier

using three different kinds of features that are fused and

overlaid successively. Summary text (represented by

Text) reflects the written content of the bug report,

whereas word frequency (represented by Freq) indicates

the content of the other fields (product, component,

reporter, severity). The table's numbers are expressed as

percentages. Our proposed approach combines text

frequency analysis with intent.

Table 4. Average accuracy of all datasets[1]

Ecosystem Features Classifier

 K-NN NB LR SVM RF

Apache Text 60.5 65.5 65.6 66.4 63.0

 Text+Freq 70.6 80.0 70.9 70.9 85.7

 Text+Freq+Intention 90.4 89.2 90.8 91.0 91.7

Eclipse Text 61.5 63.7 65.0 64.6 61.0

 Text+Freq 66.4 66.1 65.2 64.4 73.1

 Text+Freq+Intention 83.9 84.0 84.8 84.8 84.8

Gentoo Text 67.7 61.8 57.3 62.8 67.3

 Text+Freq 83.2 73.6 71.2 72.8 87.3

 Text+Freq+Intention 91.8 85.1 86.1 87.7 94.5

Mozilla Text 65.2 66.8 65.0 69.4 67.5

 Text+Freq 75.3 70.4 72.0 72.3 78.2

 Text+Freq+Intention 89.9 87.5 87.8 88.0 87.8

How Effective Is Our Suggested Approach Across

Five Distinct Classifiers?

Using the five classifiers shown in Figs. 3, 4, 5, 6, and

7, we evaluate the efficacy of our proposed technique,

which integrates text, frequency, and intention variables

(Text+Freq+Intention). Data origin is shown along the

x-axis, and the mean of 10 independent validations is

shown along the y-axis.

K-NN classifier performance

http://www.jchr.org/

Journal of Chemical Health Risks

www.jchr.org

JCHR (2023) 13(3), 1226-1237 | ISSN:2251-6727

1233

NB classifier performance

SVM classifier performance

LR classifier performance

http://www.jchr.org/

Journal of Chemical Health Risks

www.jchr.org

JCHR (2023) 13(3), 1226-1237 | ISSN:2251-6727

1234

RF classifier performance

5. DISCUSSIONS

5.1 Experiment Analysis

We test our strategy on the Apache, Eclipse, Gentoo,

and Mozilla datasets, combining the suggested

methodology with five different machine learning

classifiers. Table 4 summarizes the typical Accuracy

achieved by various data sets while using various

classifiers. The highest percentages among these

collections are as follows: 91.7% for the Apache data

set; 84.8% for the Eclipse data set; 94.5% for the

Gentoo collection; and 89.9% for the Mozilla

collection. Table 4 shows that our suggested addition of

the intention element of the report greatly increased the

accuracy of the data sets of the four ecosystems on the

five classifiers, compared to only examining the text

field of the report. We analysed the distribution of

intention characteristics and their connection with labels

(i.e., bug or non-bug) in the experimental dataset to

better understand how adding the binary feature of

reporting intention might boost classification

performance.

6. CONCLUSIONS AND FUTURE WORK

In this research, we present a novel automated

categorization strategy for bug reports, with the goal of

better understanding the report's motivation from its

textual content. Our method integrates tools from the

fields of Text Mining, NLP, and ML. To begin building

the data set necessary for the study, we gathered 2,230

reports from the bug repository across the four

ecosystems (Apache, Eclipse, Gentoo, Mozilla). Then,

we supplement the report's purpose characteristics with

the text features extracted from the summary field and

the word frequency features of the other fields. Then,

we feed this merged set of features through one of five

classifiers (K-NN, NB, SVM, LF, RF). The last step is

to distinguish between legitimate bugs and false

positives while reviewing reported issues. The findings

demonstrate that our suggested enhancements to the

report's intention features may greatly boost the

efficiency of bug report classification compared to

merely extracting text information features for

classification. In the future, we want to test the

suggested method on other open-source projects and

integrate Deep Learning tools to enhance the efficiency

with which bug reports may be automatically classified.

REFERENCES

[1] Fanqi Meng, Xuesong Wang(B), Jingdong

Wang(B), and Peifang Wang, Automatic

Classification of Bug Reports Based on

Multiple Text Information and Reports’

Intention, © Springer Nature Switzerland AG

2022 Y. Aït-Ameur and F. Cr˘aciun (Eds.):

TASE 2022, LNCS 13299, pp. 131–147, 2022.

[2] M. Irtaza Nawaz Tarar; Faizan Ahmed; Wasi

Haider Butt, 2020 15th International

http://www.jchr.org/
https://ieeexplore.ieee.org/author/37088510248
https://ieeexplore.ieee.org/author/37086647233
https://ieeexplore.ieee.org/author/38558907200
https://ieeexplore.ieee.org/author/38558907200
https://ieeexplore.ieee.org/xpl/conhome/9199030/proceeding

Journal of Chemical Health Risks

www.jchr.org

JCHR (2023) 13(3), 1226-1237 | ISSN:2251-6727

1235

Conference on Computer Science & Education

(ICCSE), 18-22 August 2020, IEEE.

[3] Meng, F., Cheng, W., Wang, J.: Semi-

supervised software defect prediction model

based on tri-training. KSII Trans. Internet Inf.

Syst. 15(11), 4028–4042 (2021)

[4] Guo, S., Chen, R., Li, H.: Using knowledge

transfer and rough set to predict the severity of

android test reports via text mining. Symmetry

9(8), 144–161 (2017)

[5] Yang, G., Min, K., Lee, J.W.: Applying topic

modeling and similarity for predicting bug

severity in cross projects. KSII Trans. Internet

Inf. Syst. 13(3), 1583–1589 (2019)

[6] Kim, S., Zhang, H.,Wu, R., Gong, L.: Dealing

with noise in defect prediction. In: 2011 33rd

International Conference on Software

Engineering (ICSE), pp. 481–490. ACM

(2011)

[7] Kochhar, P.S., Le, T.D.B., Lo, D.: Dealing

with noise in defect prediction. In: 2014 11th

Working Conference on Mining Software

Repositories (MSR), pp. 296–299. IEEE

(2014)

[8] Antoniol, G., Ayari, K., Di, P.M., Khomh, F.,

Guéhéneuc, Y.G.: Is it a bug or an

enhancement? A text-based approach to

classify change requests. In: 2008 Conference

of the Centre for Advanced Studies on

Collaborative Research: Meeting of Minds, pp.

304–318 (2008)

[9] Zhou, Y., Tong, Y., Gu, R., Gall, H.:

Combining text mining and data mining for

bug report classification. J. Softw.: Evol.

Process 28(3), 150–176 (2016)

[10] Lamkanfi, A., Demeyer, S., Giger, E.,

Goethals, B.: Predicting the severity of a

reported bug. In: 2010 7th IEEE/ACMWorking

Conference on Mining Software Repositories

(MSR), pp. 1–10. IEEE (2010)

[11] Tian, Y., Lo, D., Sun, C.: Information retrieval

based nearest neighbor classification for

finegrained bug severity prediction. In: 2012

19thWorking Conference on Reverse

Engineering, pp. 215–224 (2012)

[12] Mrs. Manga Geethanjali, SK Kusheeda Bee,

Syed Abdul Muqhit, CS MD Azeemuddin,

Traffic Priority For Ambulance, International

Journal of Multidisciplinary Engineering in

Current Research - IJMEC Volume 8, Issue 2,

February-2023, http://ijmec.com/, ISSN: 2456-

4265.

[13] Feng, Y., Chen, Z., Jones, J., Fang, C., Xu, B.:

Test report prioritization to assist

crowdsourced testing. In: 2015 10th Joint

Meeting on Foundations of Software

Engineering, pp. 225–236 (2015)

[14] Zhang, T., Chen, Y., Yang, X., Zhu, H.:

Approach of bug reports classification based

on cost extreme learning machine. J. Softw.

30(5), 1386–1406 (2019)

[15] Syed Shehriyar Ali, Mohammed Sarfaraz

Shaikh, Syed Safi Uddin, Dr. Mohammed

Abdul Bari, “Saas Product Comparison and

Reviews Using Nlp”, Journal of Engineering

Science (JES), ISSN NO:0377-9254, Vol 13,

Issue 05, MAY/2022

[16] Ms. Vrushali Pawar, Mr. Syed Zaker Hussain,

Dr.Tushar Rathod, Wearable Biosensors For

Healthcare Monitoring, International Journal

of Multidisciplinary Engineering in Current

Research - IJMEC Volume 8, Issue 2,

February-2023, http://ijmec.com/, ISSN: 2456-

4265.

[17] Hafsa Fatima, Shayesta Nazneen, Maryam

Banu, Dr. Mohammed Abdul Bar,”

Tensorflow-Based Automatic Personality

Recognition Used in Asynchronous Video

Interviews”, Journal of Engineering Science

(JES), ISSN NO:0377-9254, Vol 13, Issue 05,

MAY/2022

[18] Mohammed Shoeb, Mohammed Akram Ali,

Mohammed Shadeel, Dr. Mohammed Abdul

Bari, “Self-Driving Car: Using Opencv2 and

Machine Learning”, The International journal

of analytical and experimental modal analysis

(IJAEMA), ISSN NO: 0886-9367, Volume

XIV, Issue V, May/2022

[19] Mr. Pathan Ahmed Khan, Dr. M.A Bari,:

Impact Of Emergence With Robotics At

Educational Institution And Emerging

Challenges”, International Journal of

Multidisciplinary Engineering in Current

http://www.jchr.org/
https://ieeexplore.ieee.org/xpl/conhome/9199030/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9199030/proceeding

Journal of Chemical Health Risks

www.jchr.org

JCHR (2023) 13(3), 1226-1237 | ISSN:2251-6727

1236

Research(IJMEC), ISSN: 2456-4265, Volume

6, Issue 12, December 2021,Page 43-46

[20] Dr Altaf C, Syed Muzammil Ahmed,Mir

Mohammed Asad Ali , Rayan Razvi,

Automatic Railway Gate Controlling Using IR

Sensors And Microcontroller, International

Journal of Multidisciplinary Engineering in

Current Research - IJMEC Volume 8, Issue 3,

March-2023, http://ijmec.com/, ISSN: 2456-

4265.

[21] Yang, X.L., Lo, D., Xia, X., Huang, Q., Sun,

J.L.: High-impact bug report identification

with imbalanced learning strategies. J.

Comput. Sci. Technol. 32(1), 181–198 (2017)

[22] Kukkar, A., Mohana, R.: A supervised bug

report classification with incorporate and

textual field knowledge. Proc. Comput. Sci.

132, 352–361 (2018)

[23] Zhang, T., Jiang, H., Luo, X., Chen, A.T.: A

literature review of research in bug resolution:

tasks, challenges and future directions.

Comput. J. 59(5), 741–773 (2016)

[24] Chillarege, R., et al.: Orthogonal defect

classification-a concept for in-process

measurements IEEE Trans. Softw. Eng.

18(11), 943–956 (1992)

[25] Pingclasai, N., Hata, H., Matsumoto, K.I.:

Classifying bug reports to bugs and other

requests using topic modelling. In: 2013

20thAsia-Pacific Software

EngineeringConference (APSEC), vol. 2, pp.

13–18 (2011)

[26] Raj Kumar D bhure, K. Saisrikar, Ch.

Devayani, D. Shivareddy, Energy Efficiency

Routing For Manet Using Residual Energy,

International Journal of Multidisciplinary

Engineering in Current Research - IJMEC

Volume 8, Issue 4, April-2023,

http://ijmec.com/, ISSN: 2456-4265.

[27] Mr. Touseef Sumeer, Shahzada Salim, Md

Abdul Jabbar, Shaik Rehmath, Home

Appliances Control Using Remote Control

System, International Journal of

Multidisciplinary Engineering in Current

Research - IJMEC Volume 8, Issue 4, April-

2023, http://ijmec.com/, ISSN: 2456-4265.

[28] Menzies, T., Marcus, A.: Automated severity

assessment of software defect reports. In: 2008

IEEE International Conference on Software

Maintenance (ICSM), pp. 346–355. IEEE

(2008)

[29] Sari, G.I.P., Siahaan, D.O.: An attribute

selection for severity level determination

according to the support vector machine

classification result. In: 1st International

Conference on Information Systems for

Business Competitiveness (ICISBC) (2012)

[30] Zhang, T., Chen, J., Yang, G., Lee, B., Luo,

X.: Towards more accurate severity prediction

and fixer recommendation of software bugs. J.

Syst. Softw. 177(10), 166–184 (2016)

[31] Kukkar, A., Mohana, R., Nayyar, A., Kim, J.,

Kang, B.G., Chilamkurti, N.: A novel

deeplearning- based bug severity classification

technique using convolutional neural networks

and random forest with boosting. Sensors

19(13), 2943–2964 (2019)

[32] Du, X., Zheng, Z., Xiao, G., Yin, B.: The

automatic classification of fault trigger based

bug report. In: 2017 IEEE International

Symposium on Software Reliability

Engineering Workshops (ISSREW), pp. 259–

265. IEEE (2017)

[33] Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y.,

Zhai, C.: Bug characteristics in open source

software. Empir. Softw. Eng. 19(6), 1665–

1705 (2013). https://doi.org/10.1007/s10664-

013- 9258-8

[34] Catolino, G., Palomba, F., Zaidman, A.,

Ferrucci, F.:Not all bugs are the same:

understanding, characterizing, and classifying

bug types. J. Syst. Softw. 152(10), 165–181

(2019).

[35] D. Cubrani c and G.C. Murphy, "Hipikat:

Recommending Pertinent Software

Development Artifacts", Proc. 25th Int’l Conf.

Software Eng. (ICSE ’03), pp. 408-418, 2003.

[36] C. Sun, D. Lo, S.-C. Khoo and J. Jiang,

"Towards More Accurate Retrieval of

Duplicate Bug Reports", Proc. 26th Int’l Conf.

Automated Software Eng. (ASE ’11), pp. 253-

262, 2011.

http://www.jchr.org/
https://doi.org/10.1007/s10664-013-
https://doi.org/10.1007/s10664-013-

Journal of Chemical Health Risks

www.jchr.org

JCHR (2023) 13(3), 1226-1237 | ISSN:2251-6727

1237

[37] A. Nenkova and K. McKeown, "Automatic

Summarization", Foundations and Trends in

Information Retrieval, vol. 5, no. 2/3, pp. 103-

233, 2011.

[38] K. Zechner, "Automatic Summarization of

Open-Domain Multiparty Dialogues in Diverse

Genres", Computational Linguistics, vol. 28,

no. 4, pp. 447-485, 2002.

[39] X. Zhu and G. Penn, "Summarization of

Spontaneous Conversations", Proc. Ninth Int’l

Conf. Spoken Language Processing

(Interspeech ’06- ICSLP), pp. 1531-1534,

2006.

[40] O. Rambow, L. Shrestha, J. Chen and C.

Lauridsen, "Summarizing Email

Threads", Proc. Human Language Technology

Conf. North Am. Chapter of the Assoc. for

Computational Linguistics (HLT-NAACL ’04),

2004.

[41] R.J. Sandusky and L. Gasser, "Negotiation and

the Coordination of Information and Activity

in Distributed Software Problem

Management", Proc. Int’l ACM SIGGROUP

Conf. Supporting Group Work (GROUP ’05),

pp. 187-196, 2005.

[42] R. Lotufo, Z. Malik and K. Czarnecki,

"Modelling the ‘Hurried’ Bug Report Reading

Process to Summarize Bug Reports", Proc.

IEEE 28th Int’l Conf. SoftwareMaintenance

(ICSM’12).

[43] S. Mani, R. Catherine, V.S. Sinha and A.

Dubey, "AUSUM: Approach for Unsupervised

Bug Report Summarization", Proc. ACM

SIGSOFT 20th Int’l Symp. The Foundations of

Software Eng. (FSE ’12), 2012.

[44] S. Rastkar, G.C. Murphy and G. Murray,

"Summarizing Software Artifacts: A Case

Study of Bug Reports", Proc. 32nd ACM/IEEE

International Conference on Software

Engineering (ICSE ’10), pp. 505-514, 2010.

[45] R. Lotufo, Z. Malik and K. Czarnecki,

"Modelling the ‘Hurried’ Bug Report Reading

Process to Summarize Bug Reports", Empir.

Softw. Eng., vol. 20, no. 2, pp. 516-548, April

2015.

http://www.jchr.org/

