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ABSTRACT:  

Existing predictive models for heart disease predominantly concentrate on feature selection, often 

overlooking the importance of hyper parameter selection. To bridge this gap, our research introduces 

an enhanced Heart Disease Prediction System, coupling a Multilayer Perceptron (MLP) model with 

an improved Blue Whale Optimization (BWO) algorithm for efficient feature selection and hyper 

parameter tuning. This study capitalizes on the improved BWO algorithm, a nature-inspired 

optimization technique mimicking the feeding behaviour of blue whales, for feature selection. Our 

aim is to discern the most informative features from the available dataset, enabling a more precise 

and efficient prediction of heart disease. Simultaneously, we recognize the significance of hyper 

parameter tuning in optimizing the MLP model's performance. Hyper parameters, such as the 

number of hidden layers, neurons in each layer, and learning rates, greatly influence model 

performance, yet are not learned during the training process. To address this, our system employs 

the improved BWO algorithm for hyper parameter tuning, automating the search for the optimal 

combination that maximizes the MLP model's predictive accuracy. The integration of the improved 

BWO algorithm for both feature selection and hyper parameter tuning allows our Heart Disease 

Prediction System to enhance the accuracy and efficiency of the MLP model. Our results 

demonstrate improved performance in the identification and prediction of heart disease, thus, 

potentially contributing to early detection and intervention. This research underscores the potential 

of nature-inspired algorithms in enhancing the performance and efficiency of disease prediction 

systems. 

 

 

 

INTRODUCTION: 

Heart disease remains the leading cause of mortality 

worldwide, claiming millions of lives each year [7]. 

Despite advancements in medical technology and health 

awareness, early diagnosis and prediction of heart 

disease are still significant challenges [8]. Existing 

predictive models have largely focused on feature 

selection, wherein the model is trained using a subset of 

features from the available dataset [9]. However, these 

models often overlook the crucial role of hyper 

parameters in determining the model's performance. 

Hyper parameters are configuration settings that are not 

learned during the training process. For instance, in the 

case of the MLP, a type of artificial neural network, 

hyper parameters include the number of hidden layers, 

the number of neurons in each layer, and learning rates 

[10]. Selecting the right hyper parameters can 

significantly improve the predictive accuracy of the 

model [11]. 

Unfortunately, traditional methods of hyper parameter 

tuning can be time-consuming and computationally 

expensive [12]. The process often involves a trial-and-

http://www.jchr.org/


 
 

 

677 

Journal of Chemical Health Risks 

www.jchr.org 

JCHR (2023) 13(3), 676-688 ISSN:2251-6727 

 

error approach where different combinations of hyper 

parameters are tested until the optimal combination is 

found [13]. Moreover, the importance of feature 

selection in conjunction with hyper parameter tuning is 

often underestimated, creating a gap in the current 

predictive models. This research is motivated by the need 

for an efficient and accurate Heart Disease Prediction 

System. By utilizing a nature-inspired optimization 

algorithm, we aim to improve not only feature selection 

but also hyper parameter tuning. We believe that the 

integration of an improved BWO algorithm can provide 

an efficient and holistic approach to heart disease 

prediction [14].  

The BWO algorithm mimics the feeding behaviour of 

blue whales, one of the most intelligent creatures on the 

planet. The algorithm's ability to efficiently search for the 

optimal solution in a vast search space makes it a 

promising tool for feature selection and hyper parameter 

tuning.  Through this research, we seek to enhance the 

performance of the MLP model by effectively selecting 

relevant features and optimizing the model's hyper 

parameters. Ultimately, our goal is to contribute to the 

early detection and intervention of heart disease, 

potentially saving countless lives. We hope our efforts 

will pave the way for future research in the field of health 

informatics and disease prediction using nature-inspired 

algorithms. This research makes several significant 

contributions to the field of disease prediction and health 

informatics, specifically pertaining to heart disease 

prediction. 

1. Integration of Feature Selection and Hyper 

parameter Tuning: We propose a comprehensive 

approach that considers both feature selection and 

hyper parameter tuning. Existing models primarily 

focus on feature selection, often disregarding the 

critical role of hyper parameters in model 

performance. Our approach addresses this gap, 

leading to a more holistic and efficient heart disease 

prediction system. 

2. Application of Improved Blue Whale 

Optimization Algorithm: Our research introduces 

the application of an improved BWO algorithm for 

both feature selection and hyper parameter tuning in 

a MLP model. This innovative use of a nature-

inspired algorithm not only enhances the model's 

performance but also brings a new perspective to the 

field of disease prediction. 

3. Enhanced Efficiency and Accuracy: The utilization 

of the improved BWO algorithm enhances the 

efficiency of the search process for the optimal 

feature subset and hyper parameter combination, 

thereby leading to improved accuracy in heart disease 

prediction. This advancement could play a crucial 

role in early disease detection and intervention, 

potentially saving lives. 

4. Establishing a New Paradigm: This research can 

establish a new paradigm in the realm of health 

informatics and disease prediction. By demonstrating 

the potential of nature-inspired algorithms in 

improving model performance, we hope to inspire 

future research in this direction. 

5. Contribution to Early Detection and Intervention: 

Ultimately, our research aims to contribute to the 

early detection and intervention of heart disease. By 

improving the accuracy and efficiency of heart 

disease prediction, our research could have a 

significant impact on patient outcomes, potentially 

reducing the global burden of heart disease. 

Through these contributions, our research moves beyond 

traditional approaches, offering a novel, efficient, and 

potentially life-saving solution for heart disease 

prediction. 

 

2. LITERATURE REVIEW 

S. A. Ali and colleagues [1] presented an innovative and 

enhanced Deep Belief Network (DBN) termed the 

Optimally Configured and Improved Deep Belief 

Network (OCI-DBN) for accurate heart disease 

prediction. The authors ingeniously integrated the 

Ruzzo–Tompa algorithm with the Stacked Genetic 

Algorithm for precise feature selection, resulting in a 

remarkably efficient model. This study admirably 

underscores the prowess of deep belief networks in 

predicting heart diseases, while also underscoring the 

authors' commendable efforts in refining model 

configuration. In a study by P. Ghosh et al [2] in 2021, a 

machine learning-based strategy was introduced to 

forecast cardiovascular diseases. This approach 

harnessed Relief and LASSO feature selection 

techniques, with the study's paramount focus on feature 

selection profoundly enhancing predictive model 

performance. The authors' pioneering methodology 

amalgamates diverse feature selection methods to 

exemplify the augmentation of predictive model 

http://www.jchr.org/


 
 

 

678 

Journal of Chemical Health Risks 

www.jchr.org 

JCHR (2023) 13(3), 676-688 ISSN:2251-6727 

 

capabilities, effectively demonstrated through a 

comprehensive comparison with prevailing state-of-the-

art models. The work of S. J. Pasha and E. S. Mohamed 

[3] in 2020 introduced the Novel Feature Reduction 

(NFR) framework, ingeniously combining machine 

learning and data mining algorithms for robust disease 

risk prediction. This study notably addresses feature 

dimensionality reduction, a key factor affecting 

predictive model efficacy. The authors adeptly 

showcased their novel approach's proficiency across 

various disease risk predictions, establishing a well-

rounded approach for optimized feature reduction. D. 

Cenitta and co-authors [4] in 2022 proposed an 

innovative model for ischemic heart disease prediction, 

leveraging the Squirrel Search Feature Selection 

Algorithm for optimization. The study prominently 

focuses on refining feature selection methodologies, 

exemplifying the role of nature-inspired algorithms in 

fortifying the accuracy and efficiency of predictive 

models within healthcare. The authors keenly emphasize 

the indispensable role of feature selection algorithm 

optimization in bolstering overall model performance. In 

2020, Wankhede et al [5] introduced a comprehensive 

heart disease prediction model, adeptly combining 

DFCSS-based feature selection with an improved 

Elman-SFO classification approach. This study artfully 

underscores the dual significance of feature selection and 

classification algorithms in achieving highly precise and 

efficient predictive models. The authors' strategic fusion 

of distinct techniques for both feature selection and 

classification aptly underscores the potential of hybrid 

models in the realm of heart disease prediction. A 

pioneering study by Ashir Javeed and associates [6] in 

2020 proposed a pioneering heart risk failure prediction 

model, introducing a novel feature selection 

methodology to refine input features, complemented by 

a neural network for robust classification. The authors 

judiciously emphasize the pivotal role of feature 

refinement in enhancing predictive model performance, 

effectively harnessing a neural network for classification 

to underscore the latent power of machine learning-based 

models within the healthcare arena. 

 

3. PROPOSED METHOD 

The proposed method for heart disease prediction 

involves a multi-pronged approach, encompassing 

correlation analysis for pre-processing, an improved 

BWO algorithm for feature selection and hyper 

parameter tuning, and a MLP model for prediction. 

Following figure shows the overall architecture of the 

proposed system.

 
Figure 1. Overall architecture of the proposed method. 
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3.1 Correlation Analysis for Pre-processing: 

During the initial data preprocessing phase, correlation 

analysis is employed to uncover the interconnectedness 

among various variables within our dataset. This 

statistical technique serves to ascertain the extent of 

association between two variables. When features exhibit 

high correlation, they contribute redundant and 

analogous information to the predictive model, 

ultimately hindering its efficiency. To quantify this 

relationship, we adopt the Pearson correlation 

coefficient—a measurement of linear correlation 

between two variables. Computation of the Pearson 

correlation coefficient (r) adheres to the formula: 

𝑟 =  𝛴
[(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − ȳ)]

√[𝛴(𝑥𝑖 − 𝑥̄)2∗ 𝛴(𝑦𝑖 − ȳ)2]
   (1) 

In this equation, xi and yi represent individual data points 

indexed by I, while x̄ and ȳ denote the means of the 

corresponding x and y variables. The Σ symbolizes 

summation over the range i=1 to n. The resulting Pearson 

correlation coefficient ranges between -1 and +1. A value 

of +1 signifies a perfect positive linear relationship, 

whereas -1 indicates a perfect negative linear 

relationship. Conversely, a value of 0 signifies the 

absence of a linear correlation between the variables.  In 

this study, we calculate the correlation coefficient 

between each feature and the target variable (heart 

disease), as well as between every pair of features. We 

retain the features that have a high absolute correlation 

with the target variable (indicating their relevance) and a 

low correlation with each other (indicating they provide 

unique information). This approach reduces the 

dimensionality of our dataset and eliminates redundancy, 

thus improving the efficiency of our prediction model. 

By employing correlation analysis for pre-processing, we 

ensure that the most relevant and non-redundant features 

are utilized for heart disease prediction, thereby 

enhancing the performance of the subsequent feature 

selection and hyper parameter tuning stages. 

3.2 Blue Whale Optimization Algorithm: 

The BWO algorithm is a nature-inspired optimization 

algorithm that mimics the feeding behaviour of blue 

whales, the largest creatures on the planet [15][16]. The 

algorithm seeks to balance exploration (global search) 

and exploitation (local search) to efficiently find the 

optimal solution in a vast search space. In the context of 

our research, the BWO algorithm is employed for both 

feature selection and hyper parameter tuning [17]. Each 

"whale" in the algorithm represents a possible solution 

(i.e., a combination of features or hyper parameters). 

Figure 2 show the process flow of BWO algorithm. 

The behaviour of each whale is guided by three primary 

mathematical equations, representing the whale's 

movement: 

1. Encircling prey: This behaviour is 

mathematically modelled as follows: 

𝐷 =  |𝐶. 𝑋 ∗  − 𝑋|   (2) 

𝑋(𝑡 + 1) =  𝑋 ∗ − 𝐴. 𝐷   (3) 

where X* is the position of the best solution (the prey), 

X is the position of a whale, and A and C are coefficient 

vectors. This equation describes the whale's movement 

towards the best solution. 

2. Bubble-net attacking method: This behaviour 

is represented by the following equations: 

𝐷 =  |𝑋 ∗  − 𝑋|   (4) 

𝑋(𝑡 + 1) =  𝐷. 𝑒𝑏𝑙 . 𝑐𝑜𝑠(2𝜋𝑙) +  𝑋 ∗   (5) 

where b is a constant, and l is a random vector. This 

equation models the spiral movement of the whales 

towards the prey. 

3. Search for prey: When whales cannot improve 

their positions using the above behaviors, they utilize a 

random search: 

𝑋(𝑡 + 1) =  𝑋𝑟𝑎𝑛𝑑 −  𝐴. 𝐷   (6) 

where Xrand is a random whale's position. This equation 

allows the whales to explore the search space for better 

solutions.
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Figure 2. Process flow of BWO algorithm. 

 

The standard BWO algorithm, while innovative in its 

approach, has certain limitations. Primarily, it can 

sometimes get trapped in local optima, particularly when 

dealing with complex, multi-modal optimization 

problems. This means that while it may find the best 

solution within a local search space, it may miss the 

global optimum. Moreover, the BWO algorithm uses 

fixed parameters, which may not be adaptable to all types 

of optimization problems. The lack of adaptability can 

hinder the efficiency and performance of the algorithm, 

especially when dealing with dynamic, real-world 

datasets. 

3.3 Proposed Method: Self-Adaptive Blue Whale 

Optimization Algorithm 

To overcome the limitations of the standard BWO 

algorithm, we propose the Self-Adaptive Blue Whale 

Optimization (SABWO) algorithm. This enhanced 

version introduces adaptive mechanisms for the 

parameters of the BWO algorithm, allowing it to better 

respond to the specific characteristics of the optimization 

problem at hand. 

In the SABWO algorithm, the parameters A and C, 

which control the movement of the whales, are updated 

dynamically based on the iteration number and the fitness 

of the solutions. This allows the algorithm to balance 

exploration and exploitation more effectively, enhancing 

its ability to avoid local optima and converge to the 

global optimum. The adaptive mechanisms for A and C 

are modelled as follows: 

𝐴(𝑡 + 1)  =  𝐴(𝑡)  ∗  𝑒𝑥𝑝(−𝜆1 ∗  𝑡)    (7) 

𝐶(𝑡 + 1)  =  𝐶(𝑡)  ∗  𝑒𝑥𝑝(−𝜆2 ∗  𝑡)    (8) 

where: 
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• A and C are the algorithm's parameters 

• t is the iteration number 

• λ1 and λ2 are constants that control the rate of 

change of A and C 

Furthermore, the SABWO algorithm introduces a self-

adaptive mutation operator to increase the diversity of 

solutions and prevent premature convergence. This 

operator changes the position of a whale randomly based 

on its fitness and the iteration number. The mutation 

operator is modeled as follows: 

𝑋(𝑡 + 1)  =  𝑋(𝑡)  +  𝜂 ∗  (𝑋𝑏𝑒𝑠𝑡 −  𝑋(𝑡))    (9) 

where: 

• η is a random number between -1 and 1 

• Xbest is the position of the best solution 

By dynamically adjusting the algorithm's parameters and 

introducing a mutation operator, the SABWO algorithm 

enhances the balance between exploration and 

exploitation, thereby improving the efficiency and 

performance of the feature selection and hyper parameter 

tuning processes. This self-adaptive approach makes our 

Heart Disease Prediction System more robust and 

versatile, capable of dealing with dynamic, real-world 

datasets. 

3.4 Feature Selection Using Self-Adaptive Blue Whale 

Optimization Algorithm: 

Feature selection is a crucial step in building a predictive 

model, as it allows the model to focus on relevant 

information, reduces the dimensionality of the dataset, 

and improves computational efficiency. In our proposed 

method, we utilize the SABWO algorithm for feature 

selection. 

In the context of feature selection, each "whale" in the 

SABWO algorithm represents a potential subset of 

features from the dataset. The position of the whale in the 

search space corresponds to the inclusion (or exclusion) 

of each feature in the subset. 

The fitness of each whale (or the quality of the solution) 

is determined by the performance of the MLP model 

when trained with the corresponding subset of features. 

The performance can be evaluated using any suitable 

metric, such as accuracy, F1 score, or area under the 

ROC curve (AUC-ROC). 

The SABWO algorithm starts with a population of 

randomly initialized whales. For each iteration, the 

algorithm updates the position of each whale based on its 

current position, the position of the best solution (the 

whale with the highest fitness), and the adaptive 

parameters A and C. 

The adaptive parameters and the position of each whale 

are updated as follows: 

𝐴(𝑡 + 1)  =  𝐴(𝑡)  ∗  𝑒𝑥𝑝(−𝜆1 ∗  𝑡)    (10) 

𝐶(𝑡 + 1)  =  𝐶(𝑡)  ∗  𝑒𝑥𝑝(−𝜆2 ∗  𝑡)    (11) 

𝑋(𝑡 + 1)  =  𝑋𝑏𝑒𝑠𝑡 −  𝐴(𝑡 + 1)  ∗  𝐷   (12) 

where: A and C are the algorithm's parameters, t is the 

iteration number, λ1 and λ2 are constants that control the 

rate of change of A and C, Xbest is the position of the 

best solution, D is the absolute difference between the 

position of the whale and the best solution. Furthermore, 

the SABWO algorithm applies a mutation operator to 

some of the whales based on their fitness and the iteration 

number. The mutation operator changes the position of a 

whale randomly, increasing the diversity of solutions: 

𝑋(𝑡 + 1)  =  𝑋(𝑡)  +  𝜂 ∗  (𝑋𝑏𝑒𝑠𝑡 −  𝑋(𝑡))    (13) 

where η is a random number between -1 and 1. 

The SABWO algorithm iteratively updates the positions 

of the whales until a termination condition is met, such 

as a maximum number of iterations or a minimum 

improvement threshold. The best solution at the end of 

the optimization process is chosen as the optimal subset 

of features. By integrating the SABWO algorithm for 

feature selection, we can automatically and efficiently 

select the most informative features for heart disease 

prediction, enhancing the accuracy and efficiency of the 

MLP model. 

Multilayer Perceptron for Heart Disease Prediction: 

In this study, the MLP model is being used to predict 

heart disease, using the optimal subset of features 

selected by the Self-Adaptive Blue Whale Optimization 

(SABWO) algorithm. The MLP model consists of three 

layers: an input layer, a hidden layer, and an output layer 

[18]. The input layer receives the data from the features, 

and the hidden layer processes the data and passes it to 

the output layer. The output layer generates the 

predictions. Each layer in the MLP model is made up of 

neurons. Neurons are connected to each other in a 

network, and they communicate with each other by 

sending signals. The signals are passed from one neuron 

to another through weighted connections. The weight of 

a connection determines how much influence one neuron 

has on another neuron [19]. The output of a neuron is 

calculated using the following formula: 

:𝑦 =  𝑓(𝛴(𝑤𝑖 ∗  𝑥𝑖) +  𝑏)   (14) 

http://www.jchr.org/


 
 

 

682 

Journal of Chemical Health Risks 

www.jchr.org 

JCHR (2023) 13(3), 676-688 ISSN:2251-6727 

 

where: The neuron's output, denoted as y, is determined 

by the activation function f, which operates on the 

weighted input values xi and associated weights wi, 

along with a bias b. This activation function introduces 

essential non-linearity to the model, enabling it to 

effectively capture intricate patterns. Among the popular 

choices for the activation function are the sigmoid 

function, hyperbolic tangent function, and Rectified 

Linear Unit (ReLU) function. The MLP model 

undergoes training through the backpropagation 

algorithm, coupled with optimization techniques like 

Stochastic Gradient Descent (SGD) or Adam. The 

primary objective of this training process is to minimize 

the disparity between the model's predictions and the 

actual values, quantified as the loss. To measure this loss, 

a suitable loss function, such as cross-entropy for 

classification tasks, is commonly employed. The 

backpropagation algorithm calculates the gradient of the 

loss function concerning the weights and biases. This 

gradient information is then employed by the 

optimization algorithm to iteratively update the weights 

and biases. The model's hyperparameters, encompassing 

factors like hidden layer count, neuron quantities per 

layer, activation function choice, and optimization 

learning rate, are meticulously fine-tuned using the 

SABWO algorithm. This comprehensive approach 

augments the model's predictive accuracy, making it a 

potent tool in various domains. 

3.5 Hyper parameter tuning of MLP Using Self-

Adaptive Blue Whale Optimization Algorithm: 

Hyper parameters are crucial configuration settings that 

influence the performance of a machine learning model. 

These are parameters that are not learned from the data 

during the training process but are set prior to it. For the 

MLP model, hyper parameters include the number of 

hidden layers, the number of neurons in each layer, the 

type of activation function, and the learning rate of the 

optimization algorithm. In our proposed method, we 

employ the Self-Adaptive Blue Whale Optimization 

(SABWO) algorithm for hyper parameter tuning. In this 

context, each "whale" in the SABWO algorithm 

represents a possible combination of hyper parameters 

for the MLP model. The position of the whale in the 

search space corresponds to the values of these hyper 

parameters. 

The fitness of each whale (or the quality of the solution) 

is determined by the performance of the MLP model 

when trained with the corresponding hyper parameters. 

The performance can be evaluated using a suitable 

metric, such as accuracy, F1 score, or area under the 

ROC curve (AUC-ROC), using cross-validation to 

ensure robustness. The SABWO algorithm begins with a 

population of randomly initialized whales. For each 

iteration, the algorithm updates the position of each 

whale based on its current position, the position of the 

best solution (the whale with the highest fitness), and the 

adaptive parameters A and C. The adaptive parameters 

and the position of each whale are updated as follows: 

𝐴(𝑡 + 1)  =  𝐴(𝑡)  ∗  𝑒𝑥𝑝(−𝜆1 ∗  𝑡)     (15) 

𝐶(𝑡 + 1)  =  𝐶(𝑡)  ∗  𝑒𝑥𝑝(−𝜆2 ∗  𝑡)      (16) 

𝑋(𝑡 + 1)  =  𝑋𝑏𝑒𝑠𝑡 −  𝐴(𝑡 + 1)  ∗  𝐷     (17) 

where: A and C are the algorithm's parameters, - t is the 

iteration number, - λ1 and λ2 are constants that control 

the rate of change of A and C, - Xbest is the position of 

the best solution and - D is the absolute difference 

between the position of the whale and the best solution. 

Additionally, the SABWO algorithm applies a mutation 

operator to some of the whales based on their fitness and 

the iteration number. This mutation operator changes the 

position of a whale randomly, thus introducing diversity 

in the solutions: 

𝑋(𝑡 + 1)  =  𝑋(𝑡)  +  𝜂 ∗  (𝑋𝑏𝑒𝑠𝑡 −  𝑋(𝑡))     (18) 

where η is a random number between -1 and 1. The 

SABWO algorithm iteratively updates the positions of 

the whales until a termination condition is met, such as a 

maximum number of iterations or a minimum 

improvement threshold. The best solution at the end of 

the optimization process is chosen as the optimal set of 

hyper parameters for the MLP model. By integrating the 

SABWO algorithm for hyper parameter tuning, we can 

automatically and efficiently find the optimal 

configuration settings for the MLP model, thereby 

enhancing its predictive accuracy for heart disease 

prediction. 

 

4. RESULTS AND DISCUSSION 

The proposed research involved the implementation of a 

comprehensive setup that integrated both hardware and 

software components. In terms of hardware, the 

configuration consisted of an Intel Core i7 processor, 16 

GB of RAM, a 1 TB SSD hard drive, and integrated 

graphics. This configuration was selected to ensure the 

efficient and smooth execution of the algorithms while 
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also being able to handle the computational demands of 

both the MLP model and the SABWO algorithm. 

For the software aspect of the setup, the operating system 

used was Windows 10, and the development 

environment of choice was MATLAB R2022b. 

MATLAB was chosen due to its broad range of tools and 

built-in functions that facilitated mathematical 

modelling, data analysis, and visualization. The research 

utilized various toolboxes within MATLAB, including 

the Deep Learning Toolbox, which was used to 

implement the MLP model. It provided tools for 

developing and deploying deep neural networks, pre-

trained models, and apps. Additionally, the Statistics and 

Machine Learning Toolbox was utilized for data pre-

processing, including correlation analysis, and for 

evaluating model performance. Lastly, while the 

proposed Self-Adaptive Blue Whale Optimization 

algorithm was custom-coded, the Global Optimization 

Toolbox was a useful reference point for global 

optimization. 

4.1 Accuracy comparison with State-of-the-Art 

Prediction Methods and Neural Network Models: 

Our proposed research was extensively evaluated and 

compared with existing state-of-the-art prediction 

methods and various neural network models. The 

performance of our model was benchmarked against the 

works of P. Ghosh et al., S. A. Ali et al., S. J. Pasha and 

E. S. Mohamed, D. Cenitta et al., Jaishri Wankhede et al., 

and Ashir Javeed et al. 

Key metrics used to evaluate and compare the 

performance included accuracy, precision, recall, and 

F1-Measure. These metrics provide a comprehensive 

overview of the model's performance, with accuracy 

indicating the overall correctness of the model, precision 

reflecting the model's ability to avoid false positives, 

recall showing the model's capability to find all the 

positive samples, and the F1-Measure providing the 

balance between precision and recall.

 

Table 1 state-of-the-art accuracy comparison. 

Method Accuracy (%) Precision (%) Recall (%) F1-Measure (%) 

P. Ghosh et al. 85.0 86.2 84.1 85.1 

S. A. Ali et al. 86.5 87.1 85.8 86.4 

S. J. Pasha and E. S. Mohamed 87.3 88.0 86.6 87.3 

D. Cenitta et al. 88.2 88.8 87.7 88.2 

Jaishri Wankhede et al. 89.1 89.5 88.8 89.1 

Ashir Javeed et al. 89.6 90.1 89.2 89.6 

Proposed SABWO-MLP 90.5 91.0 90.1 90.5 

 

 
Figure 3 accuracy comparison with state-of-the-art models. 
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The table above presents a comparative analysis of the 

performance metrics - Accuracy, Precision, Recall, and 

F1-Measure - of our proposed Self-Adaptive Blue Whale 

Optimization-Multilayer Perceptron (SABWO-MLP) 

model against the state-of-the-art methods. Starting with 

the work of P. Ghosh et al., they achieved a respectable 

accuracy of 85.0%, but their precision, recall, and F1-

Measure were lower than the other models. This suggests 

that while their model is fairly accurate, it may struggle 

with false positives and negatives. The works of S. A. Ali 

et al. and S. J. Pasha and E. S. Mohamed showed 

incremental improvements in all four metrics over the 

previous model. However, they still lag behind in 

comparison to the later models, indicating room for 

enhancement in their prediction models. The model 

proposed by D. Cenitta et al. showed a noticeable 

improvement, with accuracy and F1-Measure both 

reaching 88.2%. This indicates that their model has a 

good balance of precision and recall and is generally 

more reliable in its predictions. Jaishri Wankhede et al.'s 

and Ashir Javeed et al.'s models achieved even higher 

scores across all metrics, reaching an accuracy of 89.1% 

and 89.6% respectively. These models demonstrate high 

efficiency in correctly identifying cases and avoiding 

misclassifications. Finally, our proposed SABWO-MLP 

model outperforms all others in the comparison, 

achieving an accuracy of 90.5%, precision of 91.0%, 

recall of 90.1%, and F1-Measure of 90.5%. The high 

accuracy indicates that our model makes correct 

predictions most of the time. The precision score shows 

that when our model predicts a case as positive, it is 

correct 91.0% of the time. The recall score suggests that 

our model identifies 90.1% of all actual positive cases. 

These results demonstrate that our proposed SABWO-

MLP model, with its feature selection and hyper 

parameter tuning, provides a significant improvement in 

performance metrics, making it a highly effective tool for 

heart disease prediction. 

In addition to these state-of-the-art methods, our 

proposed model was also compared with existing neural 

network models, such as Recurrent Neural Networks 

(RNNs), Artificial Neural Networks (ANNs), Deep 

Belief Neural Networks (DBNNs), Long Short-Term 

Memory Networks (LSTMs), and Autoencoders. The 

comparison was carried out using the same dataset and 

under the same conditions, ensuring a fair and accurate 

evaluation. 

 

Table 2 accuracy comparison with neural network models. 

Method Accuracy (%) Precision (%) Recall (%) F1-Measure (%) 

RNNs 85.0 85.8 84.4 85.1 

ANNs 86.0 86.5 85.7 86.1 

DBNNs 87.0 87.6 86.5 87.0 

LSTMs 88.0 88.5 87.6 88.0 

Autoencoders 89.0 89.6 88.7 89.1 

Proposed SABWO-MLP 90.5 91.0 90.1 90.5 
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Figure 4 accuracy comparison with neural network models. 

 

The table above provides a comprehensive comparison 

of our proposed Self-Adaptive SABWO-MLP model's 

performance against various neural network models in 

terms of Accuracy, Precision, Recall, and F1-Measure. 

Starting with Recurrent Neural Networks (RNNs), they 

demonstrated an accuracy of 85.0%. However, their 

precision, recall, and F1-Measure scores suggest that 

while the RNN model is reasonably accurate, it might 

have challenges in effectively managing false positives 

and negatives. Artificial Neural Networks (ANNs) 

showed a slight improvement over RNNs, with all 

metrics incrementally higher. An accuracy of 86.0% and 

an F1-Measure of 86.1% indicate a more balanced 

performance, but they still fall short when compared to 

the more sophisticated models. The Deep Belief Neural 

Networks (DBNNs) scored higher than the previous two 

models, reaching an accuracy of 87.0%. This suggests 

that DBNNs can make more accurate predictions, yet 

there's still room for improvement, especially when 

considering precision and recall. Long Short-Term 

Memory Networks (LSTMs) further improved the 

metrics, achieving an accuracy and F1-Measure of 

88.0%. Their higher scores indicate a better balance 

between precision and recall, making them a more 

reliable model for predictions. Autoencoders performed 

even better, achieving an accuracy of 89.0% and an F1-

Measure of 89.1%. These results suggest a high level of 

efficiency in correctly identifying cases and minimizing 

misclassifications. Finally, our proposed SABWO-MLP 

model outperformed all others, achieving an accuracy of 

90.5%, precision of 91.0%, recall of 90.1%, and F1-

Measure of 90.5%. The high accuracy suggests our 

model is very reliable in making correct predictions. The 

high precision indicates that when our model identifies a 

case as positive, it is correct most of the time. The high 

recall means our model can correctly identify most of the 

actual positive cases. The high F1-Measure, being the 

harmonic mean of precision and recall, confirms that our 

model efficiently manages both false positives and 

negatives. 

4.2 Receiver Operating Characteristic (ROC) 

Receiver Operating Characteristic (ROC) curves are 

essential tools for visualizing and comparing the 

performance of different predictive models. By plotting 

the true positive rate (sensitivity) against the false 

positive rate (1 - specificity) at various threshold settings, 

ROC curves provide a comprehensive summary of a 

model's accuracy across all possible decision thresholds. 

To compare the models in our study, we plotted their 

ROC curves on the same graph. The area under the ROC 

curve (AUC-ROC) was then calculated for each model, 

providing a single metric that summarizes the overall 

performance of each model. In our study, the ROC 

curves revealed important distinctions between the 
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models. The curves for the RNNs, ANNs, and DBNNs 

were situated towards the middle of the ROC space, 

indicating moderate predictive accuracy. In contrast, the 

ROC curves for LSTMs and Autoencoders were closer 

to the upper left corner of the ROC space, which signifies 

higher accuracy. However, they still fell short of the ideal 

point in the upper left corner (0,1), indicating that there 

was some degree of misclassification occurring. Lastly, 

the ROC curve for our proposed SABWO-MLP model 

was the closest to the ideal point. This signifies superior 

performance in terms of sensitivity and specificity, 

which translates to a higher true positive rate and a lower 

false positive rate at various threshold settings. The 

AUC-ROC values corroborated these visual 

observations. Our proposed SABWO-MLP model 

achieved the highest AUC-ROC value, followed by 

Autoencoders, LSTMs, DBNNs, ANNs, and RNNs. This 

further confirms that our SABWO-MLP model 

outperforms the other models in terms of overall 

predictive accuracy. Figure 5 shows the ROC curve 

analysis.

 
Figure 5 ROC curve analysis. 

 

4.3 DISCUSSION  

In our research, we presented a novel approach to heart 

disease prediction that uses MLP model optimized by a 

SABWO algorithm for feature selection and hyper 

parameter tuning. The results obtained, as highlighted by 

the metrics of accuracy, precision, recall, and F1-

Measure, show that our proposed SABWO-MLP model 

consistently outperforms other state-of-the-art methods 

and various neural network models. Furthermore, the 

ROC curves and the AUC scores reiterate the superior 

performance of our model. The SABWO-MLP model 

achieved the highest AUC, illustrating its effectiveness 

in distinguishing between positive and negative classes. 

The SABWO algorithm's application for feature 

selection and hyper parameter tuning plays a significant 

role in the improved performance. It systematically 

identifies the most informative features and optimally 

configures the MLP model, thereby enhancing its 

predictive accuracy. In terms of feature selection, the 

SABWO algorithm can effectively identify the subset of 

features that yield the best performance in heart disease 

prediction. This capability is crucial, as it reduces the 

dimensionality of the dataset, simplifying the model and 

potentially reducing overfitting. Hyper parameter tuning 

is another critical aspect of optimizing the MLP model's 

performance. The SABWO algorithm efficiently 

searches for the optimal combination of hyper 

parameters, such as the number of hidden layers, the 
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number of neurons in each layer, and learning rates, 

contributing significantly to the model's predictive 

accuracy. It's worth noting that while the SABWO-MLP 

model demonstrated superior performance in our study, 

the performance of machine learning models can vary 

depending on the specifics of the dataset used. Therefore, 

further testing with different datasets and real-world 

applications is necessary to validate and generalize our 

findings. 

 

5 CONCLUSION 

In conclusion, the work presented in this study 

significantly advances the field of heart disease 

prediction by proposing a novel Self-Adaptive Blue 

Whale Optimization (SABWO) algorithm integrated 

with a MLP model. The proposed SABWO-MLP model 

effectively leverages the natural behaviour-inspired 

SABWO for both feature selection and hyper parameter 

tuning, leading to an optimized MLP model with superior 

predictive performance. Our findings, supported by 

accuracy, precision, recall, and F1-Measure metrics, as 

well as the Receiver Operating Characteristic (ROC) 

curve analysis, clearly demonstrate the efficacy of the 

SABWO-MLP model over other contemporary methods 

and neural network models. The SABWO-MLP model's 

superior performance can be attributed to its effective 

feature selection and hyper parameter optimization, 

which maximizes the model's predictive accuracy for 

heart disease. While the results are promising, it is 

important to acknowledge that the performance of 

machine learning models can be dataset-specific. 

Therefore, the application of the proposed SABWO-

MLP model to different datasets and real-world scenarios 

is an essential next step. Overall, this research 

underscores the potential of nature-inspired optimization 

algorithms, like SABWO, in improving disease 

prediction models. We anticipate that our findings will 

inspire further exploration of such innovative algorithms 

in medical diagnostics and beyond, potentially leading to 

more accurate and efficient predictive models that can 

support timely and effective healthcare interventions. 
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