Prevalence and Risk Factors of Cardiovascular Disease in Selected Communities of Ekiti State, Southwestern Nigeria.

Ajani GO ${ }^{1}$, Gabriel-Alayode OE 2, Durowade KA 3, Ajetunmobi OA 4, Ibrahim AO ${ }^{5}$, , Ezekpo OO ${ }^{6}$, Elegbede OT ${ }^{7}$, Obajolowo \mathbf{O}^{8}, Olanrewaju TM 9, Kolawole TF 10..
${ }^{1}$ Endocrinology Unit,Department of Medicine,College of Medicine and Health Sciences, Afe Babalola University,Ado Ekiti, Ekiti State,Nigeria/Federal Teaching Hospital Ido Ekiti,Ekiti State, Nigeria.
${ }^{2}$ Department of Family Medicine, Afe Babalola University Ado-Ekiti/ Federal Teaching Hospital Ido-Ekiti, Ekiti State.
${ }^{3}$ Department of Community Medicine ,Afe Babalola University, Ado-Ekiti, Nigeria and Department of Community Medicine, Federal Teaching Hospital, Ido-Ekiti, Nigeria
${ }^{4}$ Department of Family Medicine, Afe Babalola University, Ado- and Department of Family Medicine, Federal Teaching Hospital, Ido-Ekiti, Nigeria
${ }^{5}$ Department of Family Medicine Afe Babalola University, Ado-ekiti / Federal Teaching Hospital, Ido-Ekiti Ekiti State.
${ }^{6}$ Department of Internal Medicine, Afe Bababalola Hospital, Ado Ekiti
${ }^{7}$ Department of Family Medicine, Afe Babalola University, Ado-Ekiti, Nigeria and Department of Family Medicine, Federal Teaching Hospital, Ido-Ekiti, Nigeria.
${ }^{8}$ Renal Unit, Department of Medicine, College of health science, Afe Babaloala University/ Federal teaching hospital Idoekiti.
${ }^{9}$ Department of Family Medicine, Federal Teaching Hospital Ido-Ekiti
${ }^{10}$ Respiratory Unit, Department of Medicine, College of Health Sciences, Afe BabalolaUniversity, Ado-Ekiti/
Federal Teaching Hospital Ido-Ekiti, Ekiti State
Corresponding Author:- Dr.O.E. Gabriel-Alayode

(Received: 04 February 2024
Revised: 11 March 2024
Accepted: 08 April 2024)

KEYWORDS

Cardiovascular disease, cardiovascular disease risk factors, low and middle income countries,
Anthropometrics, Blood Pressure, Dysglycaemia.

Abstract

: Background: Cardiovascular diseases (CVDs) have been on the increase in the low and middle income countries (LMICs) with increase in the attendant morbidity and mortality. In spite of this, adequate attention has not been paid to cardiovascular disease risk factors (CVDRF). People living in LMICs often do not have the benefit of Primary Health Care programmes for early detection and treatment of the risk factors for CVDs.

Objectives: The study assessed the cardiovascular risk factors among the people in selected communities in Ekiti State, Southwestern Nigeria with view of reducing cardiovascular disease.

Methods: This was a cross sectional study in which six hundred and twenty six (626) consecutive and consenting participants of age ≥ 18 years were interviewed from 6 randomly selected communities in the three senatorial zone of the state. The parameters obtained were respondents' socio-demographics and cardiovascular risk factors. P-value <0.05 was considered to be statistically significant.

Results: The mean age of the respondents was 48.4 ± 17.1 years. The prevalence of cardiovascular risk was 64.9%. Being married (AOR, 3.537; 95\% C1: 1.244-10.055), widowed (AOR, 4.707; 95\% CI: 1.005-22.043), overweight (AOR, 7.636; 95\% CI: 2.58422.564), obese (AOR, 9.764; 95\% CI: 2.984-31.947), stage 1 SBP (AOR, $2.834 ; 95 \%$ CI:

Journal of Chemical Health Risks

www.jchr.org
JCHR (2024) 14(3), 2641-2655 | ISSN:2251-6727

Abstract

1.183-6.789), stage 2 SBP (AOR, 7.614; 95\% CI:1.655-35.026) were the determinants of cardiovascular risk factors in this study

Conclusion: The results showed that there is high prevalence risk factors for cardiovascular disease in Ekiti state. The findings call for primary prevention and early detection of the risk factors through awareness and regular screening, to reduce morbidity and mortality in the area.

Introduction:

Cardiovascular diseases (CVDs) refer to a group of heart and blood vessel-related disorder.[1] Globally, it is a disease of public health importance associated with attendant morbidity and mortality.[2] In 2002, an estimated 17.9 million people died from CVDs globally,[2] and CVDs are projected to become the worldwide leading cause of morbidity and mortality by 2030.[3] This projection applies especially to low and middle-income countries, including Nigeria.[4,5] The recent rise in CVDs in developing countries has been attributed to rapid urbanization and adoption of westernized lifestyles which have led to unhealthy lifestyle behaviors, decreased physical activity, and poor dietary habits causing a rise in chronic diseases especially CVDs.[6] Other studies have suggested that 80% of the risk factors for future CVDs can be predicted from known CVDs risk factors such as hypertension, diabetes, obesity and dyslipidemia while the remaining factors are still not clear.[7,8] A study in Saudi Arabia amongst population of diverse people in 2014 reported 92.6% prevalence of CV risk factors.[9] In Nigeria, study in Lagos, Southwestern Nigeria reported 12.9% prevalence of CV risk factor in 2010 and was attributed to hypertension (20.8\%), diabetes (2.5\%), and abdominal obesity (14.7\%).[6] Another study in Oyo State, Nigeria reported 76.9% prevalence of CV risk factors in 2020 and was attributed to systolic hypertension (29.6\%), visceral obesity (35.8\%), diabetes mellitus (18.8\%), and physical inactivity (84.6\%).[4]

In Nigeria, the prevalence and associated CVDs risk factors are not clearly understood. The absence of welldeveloped programs for identification and CVD risk assessment and the management of those at risk may be responsible for this observation.[6] In order to reduce the burdens of CVDs, there is need to identify the risk factors so that appropriate intervention can be instituted.

Previous studies on risk factors for CVDs in Southwestern Nigeria were hospital-based.[4,6,8] This study is therefore aimed to ascertain the prevalence of CVD risk factors and its determinant among the people in selected communities of Ekiti State Southwestern Nigeria.

Materials and Methods:

Study setting

This study was conducted among adults in selected communities of Ekiti State, Southwestern Nigeria. Ekiti State has 16 local government areas and three senatorial zone, with a projected 2019 population of $3,365,736$ using a growth rate of 3.1% and 2006 population figure as the baseline. [10] Ekiti State is mainly inhabited by the Yoruba ethnic group that is primarily an agrarian group. However, they live in rural, semi-urban and urban centers where some are traders, artisans and civil servants. The majority, who are civil servants and traders are involved in sedentary lifestyle by the nature of their work. There are three tertiary health facilities in the State.

Study design and population

This was a descriptive cross sectional study conducted among adults aged ≥ 18 years with no ongoing acute or chronic incapacitating illness. The inclusion criteria comprised all consenting respondents aged 18 years and above, while exclusion criteria were pregnant women, medically unfit persons with oedema, ascites or other chronic illnesses, and those who could not stand straight for height and weight measurement. Also exempted from the study were respondents with a history of CVDs.

Sample size and Sampling procedure: A minimum sample size (n) of 626 was calculated using the formula $\mathrm{n}=\mathrm{z}^{2} \mathrm{pd} / \mathrm{d}^{2},[11]$ where, z is equal to 1.96 , cardiovascular risk prevalence rate (p) equal 76.9% from previous study, the margin of error (d) taken to be 3.5\%.[4]

Journal of Chemical Health Risks

www.jchr.org
JCHR (2024) 14(3), 2641-2655 | ISSN:2251-6727

Approximately six hundred and twenty six (626) were selected, to make allowance for possible non- responses. A multi stage sampling technique was used.

Research instruments and data collection methods:

A standardized interviewer-administered questionnaire adopted from WHO STEPS instrument,[12] and adapted to a local setting was employed to collect information from the respondents using ungraduates of tertiary institutions who were trained research assistants and who were familiar with the community based quantitative data collection. All the interviewers were bilingual in English and Yoruba. Anthropometric measurements were carried out for physical assessments using stadiometer (SECA 213 Height Measure, Leicester, UK) to measure height to the nearest 0.1 m , digital bathroom weighing scale (SECA Clara 803 Weight Scale, GmbH and Co, Germany) for weight measurement. All measurements were carried out in line with recommended standard protocol.[13] The Systolic and diastolic blood pressures were assessed in accordance to the guidelines of the international Society of Hypertension (ISH)/ and the seventh Joint National Committee on hypertension (JNC-7).[14] using an automated digital blood pressure (BP) monitor (OMRON M3). BP measurements were taken after each participant had rested for at least 5 minutes, were well seated with their back resting on a comfortable chair and feet on the ground. BP was measured twice with the left arm at two minutes interval. Appropriate cuff size for the participant's arm was ensured and they were asked not to talk while the BP was being taken. Laboratory assistants from the community comprehensive health centers were employed to measure the Random/fasting blood sugar (RBS) level using Accu-Chek Active glucometer.

Ethical consideration and consent:

The study was approved by the Ethics and Research Committee of Federal Teaching Hospital Ido-ekiti. (ERC FETHI). When seeking consent from the respondents, the methods and objectives of the study were explained clearly to the respondents individually. For those respondents that could not read or write, the questionnaire was translated from English language to their local language by an independent interpreter who served as their legal guardian while back translation to

English language was done to maintain response consistency. The respondents were told they were free to refuse or disengage participation at any time without losing any benefit of care or favour to those that participated. Thus, informed written consent either by appending signature or thumbprint was obtained from all adult respondents before starting the study. Confidentiality and privacy were ensured throughout the study. The study was at no cost to the respondents. The reporting of this study conforms to the strengthening the Reporting of observational studies in Epidemiology (STROBE) statement.[15]

Measurement of outcome variables:

Normal blood pressure was defined in respondent with a systolic blood pressure (SBP) $\leq 120 \mathrm{mmHg}$ and/ or a diastolic blood pressure $(\mathrm{DBP}) \leq 80 \mathrm{mmHg}$, Prehypertension (SBP 121-139 and DBP 81-89), Stage 1 hypertension as (SBP $141-159 \mathrm{mmHg}$ and DBP 9099 mmHg), and Stage 2 hypertension (SBP $\geq 160 \mathrm{mmHg}$ and $\mathrm{DBP} \geq 100 \mathrm{mmHg}$).[15] A respondent was considered to have diabetes if his fasting blood sugar was greater than $126 \mathrm{mg} / \mathrm{dl}$ or random blood sugar was greater than $200 \mathrm{mg} / \mathrm{dl} .[16]$ Body mass index (BMI) of the respondents was classified into underweight ($\leq 18.5 \mathrm{~kg} / \mathrm{m}^{2}$), normal ($18.5-24.9 \mathrm{~kg} / \mathrm{m}^{2}$), overweight .0 $29.9 \mathrm{~kg} / \mathrm{m}^{2}$), and obese ($\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$).[17]

Analysis:

The data were checked daily on the field and Statistical Package for Social Science (SPSS) version 25 (SPSS Inc., Chicago, IL, IBM Version) was used for entry and analysis. Univariate analysis of all the variables was first determined. Data were presented using frequency tables. Association between CV risk factors and other categorical variables was assessed using chi-square. For every cell with an expected value less than 5, Fishers Exact Test was used to determine the statistical significance. In the multivariate analysis, stepwise model of binary logistic regression analysis was done to determine the determinants of CVD risk. Variables imputed into the logistic model were selected based on their level of significance during the bivariate analysis. Adjusted odds ratio and 95% confidence interval were obtained to identify determinants of CVDs. Level of significance was set at $p<0.05$ for this study.

Results:

Table 1: Socio-demographic Characteristics of Respondents

Variable	Frequency	Percentage
	N = 626	(\%)
Age (in years)		
< 20	15	2.4
20-29	84	13.4
30-39	95	15.2
40-49	157	25.1
50-59	116	18.5
≥ 60	159	25.4
Mean age \pm SD	48.4 ± 17.7	
Range (min. - max.)	$16-100$	
Sex		
Male	170	27.2
Female	456	72.8
Tribe		
Yoruba	603	96.3
Igbo	12	1.9
Hausa	1	0.2
Others	10	1.6
Education		
None	60	9.6
Primary	95	15.2
Secondary	144	23.0
Tertiary	327	52.2
Occupation		
Civil Servant/ Professional	191	30.5
Business/ Trader	145	23.2
Artisan/ Driver	632	10.1
Unskilled labourer/ Farmer	32	5.1
Unemployed	6	1.0

www.jchr.org

Retiree	45	7.2
Health workers	82	13.1
Student	62	9.9
Religion	596	95.2
Christianity	30	4.8
Islam		
Marital Status	111	17.7
Single	417	66.6
Married	58	9.3
Divorced/ Separated	40	6.4
Widowed		

In Table 1 above, the result showed that 626 respondents were studied. The mean age of the respondents was 48.4 ± 17.7 years (range $18-100$). Majority of the respondents were females (72.8%), Yoruba (96.3%), and educated up
to tertiary level (52.2%). Almost one-third were civil servants/ professionals (30.5\%), and Christianity was the dominant religion (95.2%). The majority of the respondents were married (66.6%).

Table 2: Profile of Anthropometric Parameters, Blood Pressure and Glycaemia

www.jchr.org

High	406	64.9
Normal	220	35.1
Systolic Blood Pressure	427	68.2
Normal	88	14.1
Pre-hypertension	70	11.2
Stage 1 Hypertension	41	6.5
Stage 2 Hypertension		

Diastolic Blood Pressure

Normal	497	79.4
Pre-hypertension	17	2.7
Stage 1 Hypertension	78	12.5
Stage 2 Hypertension	34	5.4
Random Blood Sugar		
Normal	596	95.2
Dysglycaemia	30	4.8

In this study, a few of the respondents had family history of diabetes (10.9\%), hypertension (19.8\%), overweight (32.4\%), and class 3 obesity (1.0%). The majority had
high waist-hip ratio (64.9%), and only few had isolated stage 2 SBP (6.5%), isolated stage 2 DBP (5.4\%), and dysglycaemia (4.8\%). (Table 2).

Figure 1: Presence of Cardiovascular Risk among Respondents

In this study, the proportion of respondents with cardiovascular risk was 64.9%, figure 1 .
Table 3: Socio-demographic Associates of Cardiovascular Risks among Respondents

Variable	Cardiovascular Risk			
		No	χ^{2}	p-value
	n (\%)	n (\%)		
Age (in years)			140.948	<0.001
<20	5 (33.3)	10 (66.7)		
20-29	15 (17.9)	69 (82.1)		
30-39	46 (48.4)	49 (51.6)		
40-49	113 (72.0)	44 (28.0)		
50-59	93 (80.2)	23 (19.8)		
≥ 60	134 (84.3)	25 (15.7)		
Sex			14.536	<0.001
Male	90 (52.9)	80 (47.1)		
Female	316 (69.3)	140 (30.7)		
Tribe			15.746	<0.001
Yoruba	400 (66.3)	203 (33.7)		
Others	6 (26.1)	17 (73.9)		
Education			18.090	<0.001
None	51 (85.0)	9 (15.0)		
Primary	69 (72.6)	26 (27.4)		
Secondary	93 (64.6)	51 (35.4)		
Tertiary	193 (59.0)	134 (41.0)		
Occupation			72.521	<0.001
Civil Servant/ Professional	134 (70.2)	57 (29.8)		
Business/ Trader	114 (78.6)	31 (21.4)		
Artisan/ Driver	37 (58.7)	26 (41.3)		
Unskilled labourer/ Farmer	24 (75.0)	8 (25.0)		
Unemployed	3 (50.0)	3 (50.0)		
Retiree	36 (80.0)	9 (20.0)		
Health worker	43 (52.4)	39 (47.6)		
Student	15 (24.2)	47 (75.8)		

www.jchr.org

Religion		0.927	$\mathbf{0 . 3 3 6}$	
Christianity	$389(65.3)$	$207(34.7)$		
Islam	$17(56.7)$	$13(43.3)$		
Marital Status			123.704	$<\mathbf{0 . 0 0 1}$
Single	$22(19.8)$	$89(80.2)$		
Married	$303(72.7)$	$114(27.3)$		
Divorced/ Separated	$47(81.0)$	$11(19.0)$		
Widowed	$34(85.0)$	$6(15.0)$		

In the table 3 above, There was a statistically significant association between CV risk and the respondents' age,
gender, tribe, education, occupation, and marital status ($\mathrm{p}<0.001$).

Table 4: Associations between Profile of Anthropometric Parameters, Blood Pressure, Glycaemia and Cardiovascular Risk among Respondents

Variable	Cardiovascular Risk			
		No	χ^{2}	p-value
	n (\%)	n (\%)		
Family History of Diabetes			0.697	0.404
Yes	41 (60.3)	27 (39.7)		
No	365 (65.4)	193 (34.6)		
Family History of Hypertension			5.915	0.015
Yes	92 (74.2)	32 (25.8)		
No	314 (62.5)	188 (37.5)		
Body Mass Index			61.371	<0.001
Underweight	12 (41.4)	17 (58.6)		
Normal	142 (51.1)	136 (48.9)		
Overweight	153 (75.4)	50 (24.6)		
Obese	99 (85.3)	17 (14.7)		
Systolic Blood Pressure			42.255	<0.001
Normal	243 (56.9)	184 (43.1)		
Pre-hypertension	65 (73.9)	23 (26.1)		
Stage 1 Hypertension	60 (85.7)	10 (14.3)		
Stage 2 Hypertension	38 (92.7)	3 (7.3)		
Diastolic Blood Pressure			7.807	0.050

Normal	$309(62.2)$	$188(37.8)$	
Pre-hypertension	$12(70.6)$	$5(29.4)$	
Stage 1 Hypertension	$59(75.6)$	$19(24.4)$	
Stage 2 Hypertension	$26(76.5)$	$8(23.5)$	
Random Blood Sugar			8.740
Normal	$379(63.6)$	$217(36.4)$	
Dysglycaemia	$27(90.0)$	$3(10.0)$	

There was a statistically significant association between CV risk fand respondents family history of hypertension
($\mathrm{p}=0.015$), BMI ($\mathrm{p}<0.001$), SBP ($\mathrm{p}<0.001$), RBS (0.003) as seen in Table 4.

Table 5: Binary Logistic Regression for the Predictors of Cardiovascular Risks among Respondents

Variable	AOR	95\% CI		
		Upper Boundary	Lower Boundary	p-value
Age (in years)				
< 20	1.000			
20-29	0.477	0.122	1.864	0.287
30-39	0.733	0.116	4.613	0.740
40-49	1.644	0.254	10.650	0.602
50-59	2.268	0.342	15.066	0.397
≥ 60	3.895	0.530	28.622	0.181
Sex				
Male	1.000			
Female	1.347	0.826	2.197	0.232
Tribe				
Yoruba	2.116	0.683	6.558	0.194
Others	1.000			
Education				
None	1.427	0.480	4.241	0.523
Primary	0.754	0.345	1.647	0.479
Secondary	1.081	0.596	1.960	0.798
Tertiary	1.000			
Occupation				
Civil Servant/ Professional	0.641	0.181	2.273	0.491

www.jchr.org
Business/ Trader
Artisan/ Driver
Unskilled labourer/ Farmer

Unemployed
Retiree
Health worker
Student

0.499	0.133
1.462	0.120
1.914	0.185
1.388	0.133
1.503	0.105
1.607	0.174
1.000	

1.881	0.305
1.774	0.261
4.509	0.912
14.510	0.784
2.411	0.390
2.122	0.435

10.055
11.592
22.043
1.263
0.237

No
1.000

Body Mass Index
Underweight 1.000
Normal 2.308
Overweight
Obese
Systolic Blood Pressure
Normal 1.000
Pre-hypertension 1.526
0.782
1.183
1.655
1.000

Pre-hypertension
Stage 1 Hypertension
Stage 2 Hypertension

Random Blood Sugar

Normal 1.000

Journal of Chemical Health Risks

www.jchr.org

JCHR (2024) 14(3), 2641-2655 | ISSN:2251-6727

0.105

In this study, being married (AOR, 3.537; 95\% C1: 1.244-10.055), widowed (AOR, 4.707; 95\% CI: 1.00522.043), overweight (AOR, 7.636; 95\% CI: 2.58422.564), obese (AOR, 9.764; 95\% CI: 2.984-31.947), stage 1 SBP (AOR, 2.834; 95\% CI: 1.183-6.789), stage 2 SBP (AOR, $7.614 ; 95 \%$ CI: 1.655-35.026) were the determinants of cardiovascular risk factors. (Table 5).

Discussion:

In this study, the prevalence of cardiovascular risk factors was 64.9%. This high prevalence is a cause for concern since the respondents were apparently healthy individuals that are unaware of their CV risk status. This finding was close to 72.6% prevalence of CV risk reported in a study conducted in USA.[18] This could result from high prevalence of systolic hypertension, overweight, and obesity recorded among this study respondents. It may also result from the age distribution of the respondents which, many of them are above 40 years, and are viewed as susceptible to CV risk factors. The impact of age distribution to CV risk factors has been corroborated by other studies. [9,19] Nevertheless, the prevalence of CV risk factors in this study is lower than the finding in a study in Oyo State, Nigeria which reported 76.9% prevalence of CV risk factors in 2020 and was attributed to systolic hypertension (29.6\%), visceral obesity (35.8%), diabetes mellitus (18.8%), and physical inactivity (84.6%).[4] Likewise studies in Saudi Arabia by Soofi et al.[9] and in Nepal by Khanal et al.[19] have recorded higher CV risk factors prevalence of 92.6% and 86.4% respectively. This may be due to the older age population and a higher life expectancy in their studies. The mean age of respondents in this study was $48.4(\pm 17.7)$ years compared to $54.2(\pm 11.1)$ and $53.5(\pm$ 10.1) years reported respectively in their studies. The finding in this study calls for primary prevention of CV risk factors which has been identified as a cost-effective means of reducing CVDs morbidity and mortality in developing countries. However, the prevalence of CV risk factors found in our study was higher than 12.9% reported in a population -based study conducted in Lagos, Southwestern Nigeria.[6] Despite that the study was done in the same geopolitical zone but different states, there is a wide gab in the prevalence of CVD risk factors. The disparity may be due to the lower age
distribution in their study (mean age was 42.1 ± 21.6 years compared to 48.4 ± 17.7 years our study).

This study has established a significant association between CV risk and marital status of the respondents. The mechanisms underlying the role of marital status on CVD are not entirely understood. Several studies have linked marital status as a risk factor for CVDs to neuroendocrine pathways, healthy lifestyle behaviors (such as physical activity and diet), psycho pathological factors, and biological mediators pathway. [4,5,20] In this study, being married was 3.737 times as likely to increase the risk of CVDs when compared to single respondents. This was consistent with the reports of Ramezankhani et al.[21] who found that married individuals were associated with the risk of developing CVDs. This may be related to the age and associated BMI of the respondents. In our study, at baseline, single respondents were younger and had a lower BMI when compared with married respondents. This highlights the role of age and BMI as an important con-founder in this relationship. In contrast, several other studies have reported a negative association between married individuals and the risk for CVDs.[20,22,23] These studies relied on social causation theory that suggests that individuals benefit from spousal support and living together would allow earlier recognition and response to warning symptoms.[22-24] However, other studies have found no significant association between risk of CVDs and married individuals.[25,26]

Similarly, this study has found that being a widow was 4.707 times as likely to develop the risk for CVDs compared to being single. Our finding was consistent with the reports of other studies. [20,22] The interpretation of marital status on CVDs becomes more complex with the inclusion of divorced or widowed. [26,27] Several mechanisms have been suggested to account for the negative effect of widowed on CVDs.[20,22] Stress-related theory suggests that partner loss may have a negative effect on the economic, behavioral and emotional well being of an individual which may reduce the one's ability to prevent, detect or treat illness.[27,28] This stress has tendency to trigger the development of other CV risk factors such as hypertension, diabetes, dyslipidaemia, and

Journal of Chemical Health Risks

www.jchr.org

JCHR (2024) 14(3), 2641-2655 | ISSN:2251-6727

obesity.[20.22] Other study has found loss of social support to play a role in determining poor outcomes in widowed individuals.[24] The relationship between widowed identified as risk factor for CVDs is complex and requires further study to fully identify the mechanisms underlying these differences in outcomes.

This study identified respondents with overweight 7.636 times more likely to develop CV risk factors than those with normal values. This was consistent with other studies.[4,5] One could recommend from here that clinicians and other stakeholders who take care these patients should consider body mass index measurement as routine screening in clinical practice to predict those at risk early enough, and of equal importance, to recommend an appropriate intervention to reduce the incidence of obesity and other co-morbid conditions associated with overweight.

In this study, obesity was identified as determinants of CV risk factor as it confers 9.764 times as likelihood of developing CVDs compared with non-obese individuals. The pathogenesis of obesity as a risk factor for CVDs is multi-factorial with genetic, environmental, and lifestyle causes.[29-31] The high prevalence of respondents with obesity in this study is worrisome and calls for concerted efforts to create awareness on its consequences, and the need for lifestyle modification to enhance its control. The high prevalence may be due to strong association between obesity and major CV risk factors such as stage 1 and 2 isolated systolic hypertension, overweight, type 2 diabetes, and dyslipidaemia.[29,32,33] This finding was consistent with the results of other studies.[4,5] It may also generally reflect the adoption of westernized lifestyles being reported in developing countries, where unhealthy lifestyle behaviors in the direction of high energy intake and sedentary habits are on the increased. $[6,7]$ This may account for the reason why the prevalence of obesity in this study was almost double and three times the findings by Babatunde et al.[4] and Amole et al.[34] in the same Southwestern Nigeria two years and eight years ago respectively. The difference may just be related to the socio-economic status of the different study areas.[5] However, some studies have reported obesity "paradox" and found that individuals with overweight and obesity have a clinically better outcomes in the context of prevalent CVDs following an acute coronary event.[35]

Stage 1 isolated systolic hypertension was observed to be 2.834 times as likely to cause CV risk factors in this study. This was consistent with study by Qi et al. who found that 13.4% of respondents with isolated stage 1 hypertension was associated with CVDs risk.[33] The significant attributable risk of CVD associated with stage 1 hypertension in this study may be of immense importance for CVDs prevention in Nigeria. It is therefore suggested than early detection of stage 1 isolated systolic hypertension, and subsequent intervention are key to retarding blood pressure progression, maintain vascular health, and protect target organ damage in order to reduce the burden of CVDs.[33,36]

In this study, stage 2 isolated systolic hypertension was observed to be 7.614 times the odds of risk of CVDs. This finding was consistent with a study by Giles et al. who reported a higher risk factor for CVDs in respondents with stage two isolated systolic hypertension.[37] In this study as high as 76.5% of respondents have stage 2 isolated systolic hypertension, indicating a higher long term risk of CVDs.[38,39] This finding is importance given the existing evidence that stage 2 isolated systolic hypertension is more important in predicting CVDs and renal diseases in an ageing population.[38] The implication of this finding is that many of the respondents will require pharmacological, in addition to lifestyle interventions to halt this progression.[3,4] And this may result in additional burden, both in terms of medication adherence and high cost of the drug especially in low resource setting.[39] This finding reinforces the need for effective and sustained health education as well as routing blood pressure check in order to reduce the incidence of CVD in the study area.

Limitations: This was a cross sectional study and thus, had limited opportunities to measure any causal association between CV risk factors and other variables. Multivariate analysis cannot exclude unmeasured confounders, and association does not mean causality. Information collected from the respondents was selfreported and might be subjective by recall bias when highlighting the association between cardiovascular risk and socio-demographics. Despite these limitations, the study generates distinctive information regarding the burden of and the risk factors for CVDs, which could be
www.jchr.org
JCHR (2024) 14(3), 2641-2655 | ISSN:2251-6727

helpful for formulating further steps to implement interventions in Southwestern Nigeria.

Conclusion: CV risk factors are highly prevalent in adults attending general out-patient clinics in selected communities of Ekiti State, many of whom were undiagnosed and therefore unaware of their CV risk status before the screening. The findings call for primary prevention and early detection of risk factors through awareness and regular screening to reduce morbidity and mortality that are associated with CV risks.

Declaration:

Acknowledgements: The authors would like to appreciate nurses, resident doctors and research assistants for their role in conducting this research

Conflicts Of Interest: The authors declare that they have no conflicts of interest.

Funding: The researcher received no specific grant from any funding agency in the public, commercial or not-forprofit sectors.

Availability of data and materials: The datasets for this study would be made available from the correspondence author on a reasonable request.

Authors' contribution:

All the authors contributed equally in conceptualization, data curation, formal analysis methodology, writing original draft, and editing.

Authors Contribution:

Conception and Design:- Ajani GO, Ajetunmobi OA, Data Acquisition: - Ajani GO, Obajolowo O, Olarewaju TM

Data Analysis: - Durowade KA, Gabriel-Alayode OE
Drafting of the work :- Ibrahim AO, Gabriel- Alayode OE

Critical revision: Elegbede OT, Kolawole TF

References:

1. World Heath Organization. Global atlas on cardiovascular disease prevention and control 2011. Available from: http://www.who.int/publication/2011/97892415643 73_eng.pdf. Accessed 25 July 2022.
2. World Health Organization. World Health Report 2002: reducing risks, promoting healthy life. Geneva, World Health Organization. World Health Report 2002; 1-7, Accessed
3. Namara K.M., Alzubaidi H., Jackson J.K. Cardiovascular Disease as a leading cause of death: How are pharmacists getting involved? Integrated Pharmacy Res Pract 2019; 8: 1-11.
4. Babatunde O.A., Olarewaju S.O., Adeomi A.A., Akande J.O., Bashorun A., Umeokonkwo C.D. 10year risk for cardiovascular diseases using WHO prediction chart: findings from the civil servants in South-western Nigeria. BMC Cardiovascular Disorder, 2020. 20, 154.
5. Odugbemi T.O., Onajole A.T., Osibogun A.O. Prevalence of cardiovascular risk factors amongst traders in an urban market in Lagos, Nigeria. Nig Postgrad Med J, 2012. 19, 1
6. Oladapo O.O., Salako L., Sodiq O., Shoyinka K., Adedapo K., Falase A.O. A prevalence of cardio metabolic risk factors among a rural Yoruba southwestern Nigeria population: a population-based survey. Cardiovasc J Afr., 2010; 21: 26-31.
7. Ayogu R.N.B., Ezeh M.G., Okafor A.M. Prevalence and predictors of different patterns of hypertension among adults aged 20-60 years in rural communities of Southeast Nigeria: a cross-sectional study. Arch Pub Health, 2021. 79, 210
8. Eze CO, Kalu UA, Nnaji T. Cardiovascular risk factors in South-Eastern Nigeria: A community based survey. World J Cardiovasc Dis., 2020. 10, 417-424.
9. Soofi M.A., Youssef M.A. Prediction of 10 year risk of hard coronary events among Saudi adults based on prevalence of heart disease risk factors. J Saudi Heart Assoc., 2014. 27 (3),152-9.
10. 16. Slide share, author. Profile of Ekiti State. (18/3/2021). Available at www.slideshare.net/EkitiState Accessed 05/03/2024.
1. Araoye MO, Subject Selection: Sample size determination In: Araoye MO. Research Methodology with Statistics for Health and Social Sciences. Nathadex Publishers: 2003; 117-
2. STEPS Manual for Chronic diseases and health promotion. Available from; http://www.who.int/chp/steps//manual/en. Accessed 26 July 2022.

www.jchr.org

JCHR (2024) 14(3), 2641-2655 | ISSN:2251-6727

13. International Society for the advancement of Kinanthropometry. International standards for anthropometric assessment; 2001.p.53-55.
14. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL (juu), et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. J Am Med Assoc 2003; 289: 2560-2572.
15.von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. The strengthening the Reporting of observational studies in Epidemiology (STROBE) statement; guidelines for reporting observational studies. Ann Intern Med. 2007; 147: 573-7.
16. Mendis S, Puska P. Global Atlas on cardiovascular Disease Prevention and control, Geneva. World Health Organization (in collaboration with the World Heart Federation and World Stroke Organization. 2011.
17. Garrow JS, Webster J. Quetelet's index $\left(\mathrm{W} / \mathrm{H}^{2}\right)$ as a measure of fatness. International Journal of Obesity. 1985;9:147.
18. Ford Earl S, Giles WH, Mokdad A. The distribution of 10 year risk for coronary heart disease among US. Adults: findings from the National Health and nutrition examination survey III. J Am Coli Cardiol. 2004; 43 (10): 1791-6
19. Khanal MK, Ahmed MSA, Moniruzzaman M, Bank PC, Dhungana RR, Bhandari P, et al. Total cardiovascular risk for next 10 years among rural population of Nepal using WHO/ISH risk prediction chart. BMC Res Notes. 2017; 10 (1): 120
20. Wong CW, Kwok CS, Narain A, Gulati M, don Mihali AS, Wu P, et al. Marital Status and risk of cardiovascular disease: a systemic review and metaanalysis. Heart. 2018; 104: 1937-1948.
21. Rame-zankhani A, Azizi F, Hadaegh F. Association of marital status with diabetes, hypertension, cardiovascular disease, and all-cause mortality: A long term follow-up study. PLoS ONE. 2019; 14 (4): e0215593.
22. Dhindsa DS, Khambhati J, Schuttz WM, Tahhan AS, Quyyumi AA. Marital status and Outcomes in patients with CVD. Trends in Cardiovascular Medicine. 2020; 30:215-220.
23. Akimore EV, Pushkarev GS, Smaznov VY, et al. Socio-economic risk factors for cardiovascular disease: data from 12-year prospective epidemiologic study. Russian Journal of Cardiology. 2014; 6: 7-11
24. Orth-Gomer K. International epidemiological evidence for a relationship between social support and cardiovascular disease. In: Shumaker SA, Czajkowski SM, editors. Social support and cardiovascular disease. Boston, MA: Springer US; 1994.P.97-117
25. Floud S, Balkwill A, Campus D, et al. Marital status and Ischaemic heart disease incidence and mortality in women: a large prospective study. BMC Med 2014; 12:24.
26. Kriegbaum M, Christensen U, Lund R, et al. Job loss and broken relationships: do the number of stressful life events influence the risk of ischaemic heart disease in men? Ann Epidemiol. 2008; 18:7435
27. Dupre ME, George LK, Liu G, et al. Association between divorce and risk of acute myocardial infarction. Cir. Cardiovasc. Qual. Outcomes. 2015; 8:244-251
28. Quinones PA, Kirchberger J, Heier M, et al. M. Marital status shows a strong protective effect on long term mortality among first acute myocardial infarction-survivors with diagnosed hyperlipidemiafindings from the MONICA/KORA myocardiac infarction registry. BMC Public Health. 2014; 14:9
29. World Health Organization. Fact Sheet-Obesity and overweight. 2018. Available from: http://www.who.int/news-room/fact sheets/detail/obesity-and -overweight. Accessed 24 August 2022.
30. Iyen B, Weng S, Vinogradora Y, et al. Long term body mass index changes in overweight and obese adults and the risk of heart failure, cardiovascular disease and mortality: a cohort study of over 260,000 adults in the UK. BMC Health.2022; 21: 576
31. Cercato C, Fonseca FA. Cardiovascular risk and obesity. Diabetol Metab. Syndr. 2019; 11: 74.
32. Barroso TA, Merins LB, Alves R, Gonclaves ACS, Barroso SG, Roncha GDS. Association of central obesity with the incidence of cardiovascular disease and risk factors. Int J Cardiovasc Sci. 2017; 30: 5.
33. Qi Y, Han X, Zhao D, Wang W, Wang M, Sun J, et al. Long term cardiovascular risk associated with
www.jchr.org
stage 1 hypertension defined by the 2017. ACC/AHA hypertension guidelines
34. Amole IO,Olaolorun AD, Owolabi AO. Prevalence of obesity and hypertension among adults in Ogbomoso. Nigeria Internet J Med Update. 2011; 6(2): 9-1
35. Niedziela J, Hudzik B, Niedziela N, Gasior M, Gierlotka M, Wasilewski J, et al. The obesity paradox in acute coronary syndrome: a meta-analysis. Eur J Epidemiol. 2014; 29: 801-812.
36. Whelton PK, Carey RM, Aronow WS. ACC/AHA/AAPA/ ABC/ACPM/AGS/APHA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults; executive summary: a report of the America College of C.ardiology/America Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2018; 71: 2199-269.
37. Giles TD, Materson BJ. Treating stage 2 hypertension. J. Clin. Hypert. 2007; 7(8): 464-70
38. Ibrahim AO, Agbesanwa TA, Olabode OM, Omosanya OE, Ismail WO, Deji-Dada OO. Blood pressure control and its associated risk factors among hypertensive patients in Federal Teaching Hospital, Ido- Ekiti, SouthWestern Nigeria. Arch Community Med Public Health 2020; 6(2): 167-173.
39. Ibrahim AO, Agbesanwa TA, Ajetunmobi AO, Kolawole FT, Fashola AM, Olanrewaju MT. Sociodemographic profile, lifestyle changes and comorbid ailments as predictors of medication adherence among hypertensive patients attending federal teaching hospital, Southwestern Nigeria. Journal of Integrative Cardiology 2020; 6: 1-8.

