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ABSTRACT: This review paper analyses the revolutionary potential of big data analysis in modern 

agriculture, discussing its consequences, problems, and future possibilities. The incorporation of big 

data technologies into agricultural techniques has heralded a new era of precision farming, 

characterized by increased production, sustainability, and resilience. The study demonstrates how big 

data is altering farming methods around the world by conducting a comprehensive examination of 

diverse technologies such as autonomous cars, drone-based sensors, and satellite imaging, as well as 

unique crop development strategies. However, despite its possibilities, the use of big data in 

agriculture faces numerous hurdles, ranging from data privacy concerns to technical complications 

and budgetary limits. Despite these challenges, the paper offers promising future directions, 

suggesting for collaboration, standardization, and investment in innovative technologies to fully fulfil 

the potential of data-driven farming. By implementing these ideas and promoting inclusive, 

sustainable practices, stakeholders may negotiate the difficulties of contemporary agriculture and pave 

the way for a more efficient, resilient, and successful future. 

 

1. Introduction 

The agricultural sector serves as the foundation for food 

security in any country, with over 54% of India's 

population relying on agriculture. It plays a crucial role 

in shaping India’s socio-economic landscape as It 

encompasses both food and non-food crops. This sector, 

including forestry and fishery, contributes approximately 

20% to the GDP. (Sagar & Cauvery, 2018) 

Farming is a complex network from seed sowing to 

product sales, influenced by factors like agricultural 

inputs, climatic conditions, ecosystem modifications, 

intercultural operations, and consumer behavior. In 

India, agricultural production heavily depends on the 

monsoon, and subpar yields are attributed to fluctuations 

in rainfall. However, factors such as inadequate 

education for farmers, insufficient equipment training, 

regulatory challenges, poor infrastructure, and 

inadequate support programs also contribute to low 

productivity. (Nazirul et al., 2020) 

Crop yield information provides crucial insights into raw 

material requirements, animal feed, and paper 

production. Predicting future yield and productivity aids 

in establishing a proper supply chain for fertilizers, seeds, 

agrochemicals, and machinery. However, relying solely 

on farmers' experience for yield prediction is insufficient. 

Technology, encompassing activities like yield 

estimation, crop health monitoring, feed requirements, 

seed maintenance, and restocking records, contributes to 

more organized agriculture. Therefore, automation 

facilitates discussions on government policies such as 

crop insurance and farmer welfare (Sagar & Cauvery, 

2018) Data-driven modern agriculture, also known as 

digital agriculture, relies on real-time data covering all 

facets of agriculture. This approach, fostering sustainable 

growth, leverages advancements in technology to 

transform traditional practices into more profitable ones. 

This shift towards digital agriculture necessitates 

substantial data from crop production, livestock, fishery, 

and various technologies like Environmental Science, 

Engineering, Bioinformatics, GIS, GPS, Automation, 

Remote Sensing, Imaging, and the Internet of 

Agriculture Things (IOAT). Data mining techniques 
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address concerns related to crop yield prediction, with 

big data emerging as a potential technology to assess and 

enhance productivity in agriculture. Data mining 

techniques contribute to evaluating crop production 

patterns and exploring extensive datasets. These 

techniques, encompassing artificial intelligence, 

statistics, machine learning, and database systems, can be 

applied through either supervised or unsupervised 

methods. (Nazirul et al., 2020; Sagar & Cauvery, 2018) 

Crop development initiatives are vital to ensure 

sustainable agricultural practices while encouraging food 

security in a rapidly changing environment. Researchers 

and practitioners are responding to the rising obstacles 

related to the environment and the requirement for 

resource optimization by adopting numerous innovative 

methodologies and approaches. Increased crop 

resilience, productivity, and sustainability are being 

facilitated by advancements in precision agriculture, 

including the use of computer vision and remote sensing 

technologies, Internet of Things-based sensor-integrated 

irrigation systems, and the creation of massive datasets 

for digital agriculture. They accomplish this by fostering 

cross-disciplinary collaboration and providing the tools 

and knowledge necessary for a more resilient, efficient, 

and mindful. This review provides a thorough overview 

of the role of big data analysis in modern agriculture and 

outlines the important themes and subjects regarding the 

technology used and predictive modelling. It seeks to 

emphasize how critical it is to use technology 

innovations—like drone-based sensors, autonomous 

cars, and Internet of Things—to address issues in 

agriculture and improve efficiency, sustainability, and 

productivity. To support sustainable farming practices, 

optimize resource allocation, and inform decision-

making, it also aims to lay the groundwork for future 

research on the possible advantages, difficulties, and 

future directions of using big data analysis in agriculture. 

 

Figure 1: Overview of digital agriculture 

2. Big data analysis for crop improvement 

Big data refers to extensive and diverse datasets collected 

from various sectors, characterized by their substantial 

size, variability, and lack of categorization. These 

datasets undergo storage, analysis, and study to unveil 

hidden patterns, deduce correlations, and derive insights, 

collectively known as Big Data Analysis. Companies or 

organizations utilize this information to gain insights and 

valuable data for the growth and enhancement of their 

products, driving profitability. (Smari et al., n.d.) 

It is a process of collecting, organizing, curing, 

analyzing, and modelling the data to discover hidden 

patterns and trends. Many industrial tools such as 

Hadoop, MapReduce, HDFS, HIVE and HBase can be 

used for analysis. (Himesh et al., 2018) 

The integration of big data in agriculture is a 

revolutionary force that is transforming conventional 

farming practices. Through the utilization of advanced 

technologies, it facilitates a thorough analysis of farming 

systems, catering to the requirements of both farmers and 

consumers. It empowers farmers to make informed 

decisions, ranging from optimizing crop selection and 

irrigation management to predicting disease outbreaks 

and improving marketing efficiency. Data sources 

include planting, intercultural operations, harvesting, 

post-harvesting, and marketing, ranging from crop to 

livestock, fisheries, etc. It allows farmers to adopt better 

crop management practices by analyzing patterns in 

correlation with distinct stages of the cropping pattern, 

fertilization, harvest, and marketing. It also enables 

farmers to predict yields by calculating past algorithms 

and managing post-harvest schemes. Additionally, it 

predicts pest attacks in advance, and thorough market 

analysis can be conducted to analyze market needs, input 

costs, wages, price trends, cultivation costs, demand and 

supply, transportation costs, and profit and loss for any 

crop. (Nazirul et al., 2020) 

Despite the significant potential offered by big data in 

agriculture, persistent challenges remain in areas such as 

infrastructure development, training, and raising 

awareness. The sheer volume of agricultural data 

collected annually from complex multilayer cropping 

systems poses difficulties in terms of transferring data 

between devices. Furthermore, the pace at which data is 

generated per acre varies depending on factors such as 
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location, crop variety, and seasonal variations, adding 

another layer of complexity. (Nazirul et al., 2020) 

To fully realize the benefits of big data in agriculture and 

ensure a sustainable and efficient future for the industry, 

governments, the private sector, and public-private 

partnerships must play essential roles in promoting its 

adoption and implementation. 

3. Remote Sensing and Imaging Technologies 

Remote sensing integration is a critical component of 

agricultural technology, driving agricultural operations 

toward accuracy, efficiency, and sustainability. Through 

aircraft, drones, and satellites, it provides a 

comprehensive view of agricultural landscapes and 

important data pertaining to crop health, environmental 

conditions, and land-use patterns. 

Platforms gather sensor data and images, including 

multispectral and hyperspectral photography, thermal, 

radar, and LiDAR data aiding in monitoring crop health 

and vigor during growth season. Precision agricultural 

techniques are facilitated by the complete data it provides 

on crop development patterns, environmental conditions, 

and soil variability. (Ramirez-Gi et al., 2023) 

Other land-cover types can also be classified using this 

data, aiding in decision making about agricultural policy, 

crop rotation planning, and land management. By 

examining vegetation indicators and biomass buildup 

over time, it estimates crop yields, aiding in initiatives 

for food security and supply chain management. (Li et 

al., 2023) 

Trends, abnormalities, and threats to agricultural 

productivity can be found by tracking changes over time 

in land cover, vegetation dynamics, and ecosystem 

health. To enable well-informed decision-making linked 

to agriculture, Decision support system (DSS) integrates 

remote sensing data with meteorological forecasts, soil 

data, agronomic models, and socioeconomic indicators. 

Agronomic models, soil data, weather forecasts, 

socioeconomic indicators, and remote sensing data are all 

combined by DSS technologies to assist well-informed 

decision-making about agricultural investments, crop 

management, resource allocation, and risk reduction. 

(Orellana et al., 2023) 

IKD-Net, a deep learning architecture, processes multi-

modal remote sensing data for agriculture monitoring 

and analysis, facilitating comprehensive research of 

agricultural landscapes and assisting in crop 

management decisions.(Wang et al., n.d.) 

Farmers, agronomists, and agricultural researchers can 

use these results as part of crop monitoring systems, yield 

prediction models, or decision support tools, increasing 

agriculture's resilience, sustainability, and production by 

integrating remote sensing processes into current 

workflows. 

3.1 Autonomous Vehicles 

Including autonomous vehicles signifies a paradigm 

change toward precision, sustainability, and efficiency in 

modern agriculture. Traditional farming methods are 

being revolutionized by autonomous vehicles, ranging 

from electric tractors to mini robots with AI-driven 

systems and innovative technologies installed. To 

prioritize financial viability for farmers, it is essential to 

change from fossil-fuel based tractors to electric or 

hydrogen alternatives and implement smaller 

autonomous robots for efficiency. 

Harik et al., 2023) suggests a web-based framework for 

controlling and supervising Robot Operating System 

(ROS) based AI (Artificial Intelligence) in agriculture, 

integrating conventional machinery to bridge research 

and practical applications. They discuss the use of Multi-

Vehicle Management System (MMS) for supervising 

and allocating tasks, comprising a central server, vehicles 

(including an electric tractor and robot-tractor), and an 

autonomous charging station. 

Similarly,(Nguyen et al., 2023) proposes an autonomous 

system for the cultivation of cherry tomatoes in 

Taiwanese greenhouses. It involves the development of 

an Autonomous Spraying Vehicle (ASV) equipped with 

a Visual Autonomous Spraying System (VASS) based on 

computer vision. The ASV's design factors in the 

dimensions and layout of specific greenhouses, ensuring 

compatibility with existing infrastructure. This system 

aims to automate pesticide spraying by utilizing 

computer vision algorithms to analyze plant density and 

precisely control the spraying of agents.  

3.2 Drone Based Sensors 

Nowadays, farmers' crop-tending practices have 

undergone a radical transformation with the introduction 

of drone technology and sensor systems. Drones, also 

known as Unmanned Aerial Vehicles (UAVs), are 

equipped with a variety of sensors that allow them to 

acquire an enormous amount of data for precision 

agriculture.  
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They are complex machines that require several 

components, including a pressure sensor, GNSS module, 

gyroscope, magnetic compass, and triaxial 

accelerometer, for flight control, orientation, and 

communication with the base station. (Canicattì & 

Vallone, 2024)  

Originally developed for the military, drones are now 

vital to modern agriculture due to their low cost, 

simplicity of usage, and ability to capture high-quality 

images. By permitting real-time monitoring of crop 

health, soil conditions, and weather patterns, the 

integration of artificial intelligence (AI) with drone 

technology further improves agricultural methods. This 

integration lowers resource use, boosts yields, and 

optimizes planting and harvesting practices. Studies have 

shown that AI-enabled drones are useful for a variety of 

activities, including mapping weeds, detecting diseases, 

and predicting crop yields. (Slimani et al., 2024) 

 Precision Agriculture uses LASE (Low Altitude, Short 

Endurance) and VTOL (Vertical Take Off & Landing) 

prominently, with UAV platforms weighing less than 

5kg and containing interchangeable lithium 

batteries. These platforms, operated either from ground 

stations or in automatic mode by pre-defined trajectories, 

carry payloads such as sensors and cameras for data 

collection and specialized equipment for crop spraying. 

(Canicattì & Vallone, 2024) 

According to (Canicattì & Vallone, 2024), drone can 

perform 7 functions in precision olericulture including 

crop and weed detection, morphological and geometrical 

features extraction, crop health and stress monitoring, 

disease and pest scouting, water management, yield and 

biomass estimation and aerial spraying.  

In (Lee & Shin, 2023), researchers evaluated the 

Location Verification (LV) protocol for smart farming. 

Using a Raspberry Pi (RPi) and desktops, they 

implemented the protocol in Python with Wi-Fi 

communication and ECDSA for Digital Signature 

Scheme (DSS) operations. Overall, the LV protocol and 

block-chain solution proved feasible and efficient, 

offering strong security and performance advantages for 

smart farming. 

3.3  Satellite Imagery 

In big data analysis, satellite imaging provides a 

comprehensive perspective of agricultural landscapes 

and allows for meticulous monitoring of multiple 

features essential for crop management. Stakeholders in 

agriculture may optimize resource allocation, elevate 

productivity, and reduce risks by utilizing such big data 

analysis to ensure food security and sustainable 

agricultural practices in a world that is changing quickly. 

In (Zhu et al., 2024), agricultural monitoring has been 

transformed by satellite imaging, enabling high-

resolution, broad coverage of agricultural areas to gather 

significant data on crop health, field boundaries, and land 

use, to assist in determining the most effective way to 

manage crops and distribute resources. 

According to (Quintana-Molina et al., 2023) big data 

analysis in agriculture utilizes satellite photography, with 

a particular emphasis on estimating soil moisture. 

Researchers can study agricultural areas over wide 

territories and for extended periods of time with the help 

of comprehensive perspective provided by satellite 

images. This makes it possible to identify patterns, 

trends, and anomalies that might not be noticeable at 

smaller scales.  

Satellite images play a key role in estimating agricultural 

cropland yield through image processing and computer 

vision techniques for estimating agricultural variables. 

These methods provide an initial basis for the acquisition 

of attributes from satellite pictures, which can then be 

associated with different agricultural variables such as 

crop production, biomass, and plant health. These 

systems enable the collection, processing, and analysis of 

temporal and spatial data from satellite photos, enabling 

management decisions that are customized to the 

estimated variability of agricultural factors and the 

unique requirements of farmers.  

Certain reports present a methodology for estimating 

cropland yield based on normalized difference 

vegetation index (NDVI) multispectral images obtained 

from satellites for processing NDVI images and compute 

yield estimates depending on NDVI variations across 

different intervals. Through the application of this 

interface, users may submit photographs, apply 

segmentation algorithms, and view the results in an 

intuitive way. 

(Methods_for_estimating_agricultural_cropland_yield, 

n.d.) 

Satellite imagery monitors the effects of climate change 

on farmland and evaluates food security (FS). It utilizes 

an integrated strategy that mixes Google Earth Engine 

(GEE), deep learning convolutional neural networks 

(DL-CNN), CA-Markov modeling, and remote sensing 
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approaches. Investigating the relationships between 

predisposing variables (e.g., LST, precipitation) and FS 

indicators (e.g., agricultural land, frost-affected areas) 

using correlation analysis helps identify key 

environmental factors influencing FS and prioritize 

interventions accordingly.(Kazemi Garajeh et al., 2023) 

Utilizing innovative methods and accurate measurements 

obtained from satellite data, tackles the problem of field 

demarcation. These metrics evaluate the geometric 

shapes, field boundaries, and overall quality of field 

delineation accuracy. By using this data, agricultural 

productivity and sustainability can be increased through 

decisions like pest control, irrigation timing, and crop 

rotation. (Zhu et al., 2024) 

4. Internet of Things in Agriculture 

The Internet of Things (IoT) is a network of networked 

devices, sensors, and actuators installed in agricultural 

facilities to collect and exchange data. IoT includes the 

deployment of numerous sensors and actuators 

throughout agricultural operations. Environmental 

characteristics like temperature, humidity, soil moisture, 

pH levels, and energy consumption are measured by 

these sensors and based on the information gathered by 

sensors, actuators are used to regulate a variety of 

operations, including irrigation, climate control, and 

energy management. 

The evolution of IoT and wireless connectivity for 

objects and devices within farming and supply chains 

generates numerous real-time datasets, poised to bring 

about significant transformations in the scope and 

operations of Smart Farming. Business analytics, 

operating at a scale and speed unprecedented in the past, 

consistently reshaping, and introducing novel business 

models (Himesh et al., 2018) 

According to a study, IoT innovations are rapidly 

collecting, communicating, achieving, and analyzing 

data in agriculture-food sector. DSS (Decision Support 

System) tools can be developed using IoT and data 

analytics to enhance productivity by devising proper crop 

planning based on historical crop data. (Himesh et al., 

2018) 

Through the integration of sensors, actuators, and control 

systems, IoT enables subsystems inside agricultural 

facilities to operate together. IoT also makes it possible 

to gather data in real-time from sensors positioned 

around the farm and send it to centralize processing units 

like edge and fog nodes via networks, including local 

intranets and the internet. Agriculture settings benefit 

from edge computing, a distributed computing paradigm 

that places data processing and analysis closer to the data 

source. It makes real-time data processing and decision-

making easier. There are suggestions for a three-tiered 

distributed computing architecture where data is created 

by actuators and sensors: edge, fog, and cloud services. 

By allowing data processing and control functions to be 

completed locally, this architecture lowers latency and 

bandwidth needs. Edge computing nodes are deployed 

within agricultural facilities to handle data processing 

tasks related to irrigation, climate control, soil 

monitoring, and energy management. These nodes 

process sensor data locally, execute control algorithms, 

adjust irrigation schedules, climate settings, and energy 

usage based on predefined rules or machine learning 

models. This localized processing reduces reliance on 

centralized cloud services and enables faster response 

times to change environmental conditions. It facilitates 

interoperability between different subsystems within 

agricultural facilities by providing a platform for 

integrating control devices, sensors, and actuators. 

(Ferrández-Pastor et al., 2018) 

 

Figure 2: Elements of Internet of Things 

4.1  Sensors and Actuators 

Sensors are devices used in agricultural settings to collect 

data on many aspects that affect crop growth and facility 

conditions. Agriculture, environmental monitoring, and 

industrial automation all benefit from remote sensors and 

actuators. They gather information from the physical 

environment and manage physical processes without the 

need for direct human participation (Sikka et al., 2006)  
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These sensors provide real-time data streams capturing 

dynamic changes in circumstances while continuously 

monitoring the farm environment that contributes large 

data sets. The data is analyzed using sophisticated 

analytics algorithms to find patterns, correlations, and 

trends that provide a greater insight of farm dynamics 

and operations. Such insights are used to improve 

farming operations and decision-making procedures. 

(Sikka et al., 2006) 

Sensors can gather greenhouse environmental data such 

as temperature and humidity levels within and outside the 

greenhouse by various Temperature and Humidity 

Sensor, that helps in greenhouse climate monitoring and 

control. These sensors collectively gather essential 

environmental data related to temperature, humidity, 

light, air quality, wind, rainfall, soil conditions, and 

geographic location.(Song et al., 2024) 

Wireless Sensor Networks (WSN) and Wireless Sensor-

Actuator Networks (WSAN) automate the operation and 

administration of agricultural equipment by collecting 

real-time data and controlling physical processes. These 

sensor nodes can monitor agricultural data remotely 

light, humidity, temperature, and soil moisture sensors. 

Through constant observation of multiple parameters, 

these networks can identify anomalies or departures from 

intended circumstances. WSN and WSAN nodes are 

often intended to use less power, allowing for longer 

battery life or even energy harvesting from the 

environment. (Aqeel-Ur-Rehman et al., 2014)  

Actuators are responsible for carrying out physical 

actions or operations based on the data collected by 

sensors and instructions received from the control 

system. The Wi-Fi Module establishes a wireless 

connection to the network and cloud platform and allows 

remote communication with the greenhouse control 

system, enabling users to monitor and control 

greenhouse equipment from anywhere with internet 

access. These actuators work with the sensor network 

and control system to automate various processes within 

the greenhouse, such as ventilation control, temperature 

regulation, and remote monitoring. (Song et al., 2024) 

Similarly, the automated hydroponic fertilizer control 

system, using sensor systems and the Raspberry Pi 4 

gathers data, monitor and analyze trends and correlations 

between plant growth and environmental conditions.  Its 

computational skills allow it to analyze sensor data in 

real time, apply control algorithms, and connect with 

actuators to maintain ideal growing environments. 

(Naveena et al., 2024)  

4.2  Cloud Computing  

Cloud computing is the practice of delivering computer 

services over the internet, or "cloud," encompassing 

servers, storage, databases, networking, software, 

analytics, and intelligence. This approach facilitates 

prompt development, flexible resource distribution, and 

economical efficacy. Instead of maintaining and storing 

computer resources and applications locally on their own 

devices or in physical data centers, it allows users to 

access and utilize it anytime from remote servers. These 

systems improve scalability, efficiency, and accessibility 

of computer resources since users may use them from 

anywhere with an internet connection, and the resources 

can be readily scaled up or down based on demand. 

Cloud platforms, such as Ali Cloud IoT platform, serve 

as repositories for storing the vast amount of data 

collected from sensors deployed throughout the 

greenhouse environment. These platforms offer scalable 

and reliable storage solutions capable of handling large 

volumes of sensor data generated in real-time. 

Greenhouse equipment and procedures may be remotely 

monitored and managed from any location with internet 

access with the aid of cloud-based control interfaces. 

Through web-based or mobile applications, users can 

examine real-time sensor data, receive alerts, and change 

control settings as needed on the platform. (Song et al., 

2024)  

A study shows development of smart IoT lysimetry 

system associated with cloud computing services for 

precise water management. Cloud computing enables 

efficient data storage, manipulation, and access from any 

location with internet access. The cloud-based database 

acts as a central repository for the data acquired by the 

IoT lysimetry system, allowing for real-time system 

performance monitoring as well as data analysis and 

visualization. Users can access the database through web 

browsers or mobile devices, allowing for convenient 

monitoring and management of agricultural water 

management processes. Furthermore, the integration of 

Google Sheets with the APP script platform offers 

opportunities for implementing computational 

programming algorithms. These algorithms can 

automate data processing tasks, such as calculating crop 

evapotranspiration based on reference 

evapotranspiration data collected by the lysimeter. Cloud 
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computing services provided by Google Inc. offer 

scalability, reliability, and flexibility, making them 

suitable for integrating with agricultural IoT systems. 

The open nature of these services allows users to develop 

custom programming algorithms tailored to their specific 

needs and easily integrate them into Google's 

ecosystem.(Junior et al., 2023) 

5. Predictive Modelling 

Predictive modelling refers to the use of machine 

learning algorithms to make predictions or classifications 

based on data inputs. Predictive modelling involves 

training classifiers on imagery data to accurately identify 

and differentiate between different samples of crops and 

weed species in fields. The goal is to leverage these 

models to predict the presence or absence of specific 

weeds or crop species across different agricultural 

landscapes. By analyzing features extracted from aerial 

images, the classifiers learn to recognize patterns 

associated with weeds and crops. Through this process, 

predictive models can effectively classify areas of 

interest, enabling precision management strategies. The 

accuracy and reliability of these predictions depend on 

factors such as the quality of training data, choice of 

resampling techniques, and the suitability of image types. 

It offers a powerful tool for optimizing resource 

allocation, reducing herbicide use, and enhancing overall 

crop productivity through targeted weed control 

measures.  (Cox et al., 2023) 

A study investigates real-time litchi detection using 

computational neural networks (CNN) and edge devices 

to improve accuracy and model size prediction. It 

employs 11 data augmentation techniques to enhance 

model robustness and develops a YOLOx-based CNN 

for accurate and real-time litchi detection. Channel and 

layer pruning algorithms compress the model by 97.1%, 

reducing its size to 6.9 MB and speeding up inference 

time by 1.8 times. Comparison experiments with existing 

methods demonstrated superior performance in terms of 

parameter reduction and inference speed. Models such as 

the compressed deep learning model facilitate efficient 

harvesting by significantly reducing the model size while 

maintaining accuracy and increasing inference speed. 

This allows farmers to employ edge devices with limited 

resources for effective fruit detection and harvesting, 

thereby enabling low-input, high-yield farming practices. 

(Jiao et al., 2024) 

Machine learning based image processing technique is 

used for detecting the damage caused by Tuta absoluta, 

a harmful insect pest, on tomato. By training a Decision 

Trees (DTs) algorithm with images of infested leaves, the 

research accurately identified the intensity of damage 

caused by the pest. Unlike traditional CNN-based 

methods, which struggle with non-distinct object shapes, 

the DTs algorithm efficiently classified complex shapes 

without the need for manual background removal. 

Achieving a precision rate of 0.98, the study 

demonstrates the potential of DTs in pest detection, 

offering a promising alternative to CNNs and paving the 

way for advancements in precision agriculture.(Bütüner 

et al., 2024)  

A study aims to improve millet yield prediction in 

Senegal using advanced remote sensing data and 

statistical methods. By leveraging advanced statistical 

methods such as Spearman's rank correlation analysis 

and machine learning algorithms like Random Forest 

Regression, the research aims to extract meaningful 

patterns from complex datasets, enabling more accurate 

predictions of millet yields. The study utilizes various 

spatiotemporal and physiographical variables derived 

from remote sensing data to develop predictive models 

for millet yield. The data analysis involves bias 

correction, exploratory analysis, predictive analysis, and 

permutation importance analysis. Integrating soil 

moisture indicators, considering different growth stages, 

and applying bias correction improved yield forecasts. 

(Banda et al., 2024)  

 

Figure 3: Applications of Big Data Analysis 

A real-time Global Navigation Satellite Systems (GNSS) 

is used to observe processing facility for meteorological 

purposes, which calculates tropospheric delays and 

gradients. The Bernese V5.2 GNSS processing software 

is used to pre-process hourly GNSS observations and 
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calculate tropospheric parameters, relying on ultra-rapid 

orbit solutions from the Centre for Orbit Determination 

in Europe. With data from multiple national and 

international GNSS networks, the system estimates 

station coordinates weekly and processes hourly data to 

calculate zenith wet delays and tropospheric gradients. 

The paper also introduces tomographic reconstruction 

methodology for estimating 3D wet refractivity models, 

facilitating improved understanding of atmospheric 

dynamics. The system reconstructs the refractivity field 

using observed slant wet delays, allowing for outlier 

detection and filtering. The validated predictive models 

are deployed in a real-time GNSS data processing 

system, facilitating continuous data collection, and 

processing while improving the accuracy of atmospheric 

tomography in applications within meteorology and 

atmospheric science. (Turák et al., 2024) 

6. Challenges and Future Directions  

With the advancement in big data analysis in agriculture, 

there are certain obstacles that must be addressed for 

effective implementation of big data for revolutionizing 

farming practices and enhancing productivity. 

The agriculture sector has a variety of challenges as a 

result of the massive and irregular nature of data, as well 

as social, economic, and technological limits. Data 

ownership disparities impede data exchange and 

adoption, posing significant privacy hazards. 

Overcoming farmers' reluctance to share data and 

addressing their preference for conventional practices 

provide further challenges. Additionally, integrating 

disparate information into cohesive frameworks and 

maintaining data quality remains tricky, exacerbated by 

rural internet constraints. (Rozenstein et al., 2024) 

Efforts to bridge communication technologies and ensure 

seamless IoT operations are critical, requiring mobile-

friendly systems that can adapt to a variety of contexts. 

Collaboration and investment 

are critical to optimising data for agricultural concerns 

and building a resilient food system.(Morchid et al., 

2024) 

New analytics and machine learning approaches offer to 

present relevant insights while automating data 

collecting, consequently improving decision-

making. Standardization efforts are critical for seamless 

integration, as they enable complete analysis across 

several data sources. Using big data analysis can 

improve market efficiency and farmer livelihoods by 

implementing predictive analytics and improved supply 

chain management. (Morchid et al., 2024) 

Continuous improvement in sensor technologies and data 

management systems improves data accuracy, thereby 

promoting sustainable farming methods. Collaboration 

between the public and private sectors is critical in 

handling big data concerns efficiently. Involving 

stakeholders in program creation ensures feasibility and 

sustainability.  

Automation, uniformity, sensor technologies, predictive 

analytics, and collaboration are critical components of a 

resilient, efficient, and sustainable agricultural 

ecosystem. The agriculture industry can thrive in the face 

of changing environmental and economic conditions by 

working together to overcome these problems 

and capitalizing on technological advances.  

7. Conclusion 

In conclusion, this comprehensive review paper 

emphasizes the profound impact of incorporating big 

data analysis into agriculture, particularly considering 

the modern technological advancements discussed 

throughout the paper. Despite the inherent hurdles, which 

vary from data privacy concerns to economic limits and 

technological barriers, the proposed future options offer 

a clear route to overcome them. A more robust, effective, 

and sustainable agricultural ecosystem may be achieved 

by stakeholders implementing automation, 

standardization, predictive analytics, breakthroughs in 

sensor technologies, and collaboration. It requires cross-

sector cooperation, calculated investments, and an 

unwavering commitment to sustainability and inclusion 

to make the shift to data-driven farming. Through united 

effort, we can ensure future generations' access to 

sustenance while optimizing resource allocation, 

enhancing decision-making procedures, and eventually 

improving farmer livelihoods. It is imperative that we 

continue to be mindful of the diverse requirements of 

every individual involved in the agricultural value chain 

as we proceed, ensuring that innovations contribute to 

and benefit all parties. 
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