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ABSTRACT:  

Noble metal nanoparticles, including gold, silver, platinum, and palladium, have garnered 

significant attention for their potential applications as sensors in water quality monitoring. Despite 

extensive research on the individual synthesis and properties of these nanoparticles, a 

comprehensive review focusing on their collective application in detecting water pollutants has 

been lacking. This review is crucial as it addresses a significant gap in the literature, highlighting 

the unique capabilities of noble metal nanoparticles in environmental monitoring. We 

systematically examine various synthesis methods for these nanoparticles, including chemical 

reduction, electrochemical techniques, and green synthesis, providing a detailed overview of each 

approach's advantages and limitations. It further explores the unique properties and characteristics 

of noble metal nanoparticles, such as their high surface area, tunable optical properties, and 

excellent conductivity, which make them particularly suitable for sensing applications. The 

detection mechanisms of these nanoparticles as sensors are analyzed, focusing on their ability to 

detect various water pollutants through techniques such as surface plasmon resonance (SPR), 

electrochemical sensing, and colorimetric detection. Our comprehensive examination reveals that 

noble metal nanoparticles exhibit remarkable sensitivity and selectivity towards a wide range of 

contaminants, including heavy metals, organic compounds, and pathogens, offering promising 

solutions for real-time and on-site water quality assessment. The major findings underscore the 

significant potential of these nanoparticles in enhancing the accuracy and efficiency of water quality 

monitoring systems. This review provides a valuable resource for researchers and policymakers, 

emphasizing the transformative potential of noble metal nanoparticles in ensuring safe and clean 

water resources. 

 

1. Introduction 

Water is an indispensable resource for life on Earth, yet 

it faces escalating threats from pollution driven by the 

growing global population and the concomitant demand 

for goods and services dependent on water [1]. Water 

bodies around the world are increasingly contaminated 

with various pollutants, including heavy metals, 

insecticides, and organic compounds, originating from 

both natural sources and human activities (see Figure 1). 

In many developing nations, poorly treated domestic, 

industrial, and agricultural wastewater is frequently 

discharged into the environment, leading to high 

concentrations of harmful metals [2]. Mercury, classified 

by the World Health Organization as a neurotoxicant and 

immunotoxic, has a long half-life in human brains, 

posing significant public health risks [3]. Similarly, 

chromium, a toxic metal found in water from both natural 

and anthropogenic sources, can cause a range of health 

issues from skin irritation to DNA damage and cancer, 

depending on exposure levels [4]. Lead contamination in 

drinking water is associated with severe health risks, 

including cancer, stroke, and kidney disease in adults, 

developmental issues, brain damage, and lower IQ levels 

in children [5]. Research has shown that minor 

populations in the semi-arid region of East India are 

particularly vulnerable to both carcinogenic and 

noncarcinogenic diseases primarily through oral 

exposure[6]. The unchecked discharge from industrial 
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sites and agricultural runoff further exacerbates the 

problem, rendering water unfit for human consumption 

[7]. These persistent metals are toxic to aquatic life and 

humans even at low exposure levels, leading to 

detrimental effects on aquatic ecosystems such as the 

death of aquatic organisms, algal blooms, habitat damage 

from sedimentation and debris, increased water flow, and 

various short- and long-term toxicities from chemical 

contaminants [8]. In addition to heavy metals, 

agricultural practices contribute significantly to water 

contamination through the use of insecticides, which 

enter water bodies via leaching and runoff. Over half of 

the detected pesticide concentrations exceed regulatory 

thresholds, posing significant risks to aquatic 

biodiversity and human health [9]. Insecticide exposure 

can lead to acute and chronic toxicity, affecting various 

organs and systems in living organisms [10]. 

Organophosphorus and carbamate insecticides, for 

instance, inactivate acetylcholinesterase in both insects 

and mammals, causing toxic effects through structural 

requirements and metabolic activation or degradation 

[11]. Furthermore, dithiocarbamates, a category of 

fungicides, are cytotoxic and should be considered 

broad-spectrum biocides for aquatic organisms [12]. 

Groundwater pollution also presents significant 

challenges, with hydrogen sulfide contamination causing 

a rotten egg smell and unpleasant taste, leading to nausea 

and vomiting, and prolonged exposure resulting in severe 

gastrointestinal and neurological symptoms [13]. 

Agricultural non-point sources, including fertilizers, 

pesticides, and animal wastes, seep into the soil, causing 

health issues for both humans and aquatic life [14]. In 

Northern India, groundwater pollution is exacerbated by 

the influx of contaminated Ganga River water and 

pesticide residues washed into the ground by monsoon 

rains, highlighting the significant impact of agricultural 

practices on water quality [15]. To address the issue of 

water contamination, it is crucial to identify and quantify 

the pollutants. This necessitates the use of rapid and 

reliable analytical tools for environmental monitoring. 

Noble metal nanostructures have garnered significant 

attention in nanotechnology due to their unique 

properties, including substantial optical field 

enhancements that generate intense light scattering and 

absorption [16]. These nanoparticles are widely used as 

color labels and signal generators in the fabrication of 

colorimetric assays and sensors due to their simplicity 

and practicality [17]. Nanoparticle-based environmental 

sensors hold significant promise for detecting toxins, 

heavy metals, and organic pollutants in air, water, and 

soil. They are expected to play an increasingly important 

role in environmental monitoring, enhancing the 

detection and sensing of pollutants and aiding in the 

development of new remediation technologies [18]. This 

review will focus on the use of noble metal nanoparticles 

in sensing contaminants in water sources, including 

heavy metal ions, insecticides, pesticides, and microbes, 

demonstrating their potential as effective environmental 

monitors. 

 

Figure 1 Various Sources of Water Contaminants 

2. Synthesis of Noble Metal Nanoparticles  

2.1 Gold Nanoparticles 

Gold nanoparticles, synthesized via various methods, 

revolutionize nanotechnology applications [19]. Both 

top-down and bottom-up approaches enable precise 

control over nanoparticle properties. Employing a two-

step chemical reduction and centrifugation method 

yielded high-concentration gold nanoparticles with 

exceptional stability [20]. Continuous flow 

microreactors provide a versatile platform for direct 

synthesis of gold nanoparticles, highlighting 

advancements in nanoparticle fabrication [21]. Biogenic 

synthesis using plant extracts offers environmentally 

friendly routes to gold nanoparticle production, as 

demonstrated with Sansevieria roxburghiana and 

Pogostemon benghalensis extracts [22,23]. Additionally, 

innovative approaches utilizing amino acids and 

essential oils as reducing agents showcase advancements 

in green synthesis methods. Furthermore, gold 

nanoparticles synthesized from tetraauric acid using 

various amino acids as reducing agents demonstrate the 
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versatility of biogenic synthesis [24]. Green chemistry 

applications include the catalytic reduction of 4-

nitrophenol to 4-aminophenol by gold nanoparticles 

derived from a glucan derived from an edible mushroom 

[25]. 

2.2 Silver Nanoparticles 

Robust synthesis of silver nanoparticles from aqueous 

AgNO3 highlights their promising  antimicrobial 

properties [26]. Various methods, including chemical 

reduction and plant extract-mediated synthesis, provide 

versatile routes to silver nanoparticle fabrication [27]. 

Light-assisted synthesis using LED and sunlight 

enhances nanoparticle production efficiency, expanding 

the scope of silver nanoparticle synthesis [28]. Notably, 

silver nanoparticles exhibit significant inhibitory activity 

against both Gram-positive and Gram-negative bacteria, 

indicating their potential in antimicrobial applications 

[29]. Additionally, silver nanoparticles synthesized from 

Withania somnifera leaf powder under direct sunlight 

demonstrate the influence of blue light in the reduction 

process [30]. Green synthesis of silver nanoparticles 

using Zosimia absinthifolia leaf extract provides a cost-

effective and eco-friendly alternative to conventional 

methods [31]. 

2.3 Platinum Nanoparticles 

Precise control over size and properties is achieved in 

platinum nanoparticle synthesis through photoreduction 

and plasma-chemical reduction methods [32,33]. Green 

synthesis approaches, such as utilizing wood 

nanomaterials and protein cavities, underscore 

environmentally friendly strategies in nanoparticle 

fabrication [34,35]. Catalytic activity in Suzuki-Miyaura 

cross-coupling reactions and hydrogenation positions 

platinum nanoparticles for diverse industrial processes 

[36]. Furthermore, the use of dendrimers and phosphine 

ligands as stabilizing agents enhances nanoparticle 

catalytic performance and reusability [37]. Quail egg 

yolk, known for its high vitamin and protein content, 

serves as a unique medium for green synthesis of 

platinum nanoparticles [38]. 

2.4 Palladium Nanoparticles 

High catalytic efficiency is demonstrated in palladium 

nanoparticle synthesis using plant metabolites and 

polyphenols[39]. Green synthesis methods, including 

photoassisted citrate reduction and biomolecule-

mediated synthesis, offer sustainable routes to palladium 

nanoparticle production [40]. Functionalization with 

nitrogen-doped carbon nanostructures enhances catalytic 

activity and magnetically separable properties of 

palladium nanoparticles [41]. Protein cavity-mediated 

synthesis provides a novel approach for stabilizing 

palladium nanoparticles, showing promise in 

biocatalysis applications[42]. Phosphine dendrimer-

stabilized palladium nanoparticles demonstrate high 

effectiveness in the Suzuki-Miyaura reaction and 

hydrogenation, offering superior product yields, turnover 

numbers, and reusability[43]. Moreover, the 

hydrothermal synthesis of a novel palladium 

electrocatalyst using a composite of copper 

phthalocyanine-3,4′,4″,4′″- tetrasulfonic acid 

tetrasodium salt functionalized multi-walled carbon 

nanotubes as the catalyst support for Palladium 

nanoparticles showcases innovative approaches in 

palladium nanoparticle synthesis [44]. 

3. Properties and Characteristics of Noble Metal 

Nanoparticles 

Noble metal nanoparticles, including gold, silver, 

platinum, and palladium, are notable for their exceptional 

functional qualities and strong resistance to oxidation 

and corrosion, making them invaluable in biotechnology 

and biomedicine [45]. These nanoparticles are 

characterized by their unique optical, spectroscopic, and 

physicochemical properties, which significantly enhance 

bioanalyte detection in biosensing platforms [46]. The 

exceptional inherent qualities and wide range of 

applications of noble metal nanoparticles have made 

metals like gold, silver, platinum, and palladium 

increasingly significant [45]. For instance, gold and 

silver nanostructures exhibit substantial optical field 

enhancements that cause them to scatter and absorb light 

efficiently, making them ideal for biological, medical, 

and imaging applications [47]. Noble metal nanoparticles 

exhibit their well-defined spectroscopic features, such as 

optical absorption, emission, and luminescence, in the 

visible-near-infrared window. The fascinating optical 

characteristics of these nanoparticles are primarily 

influenced by surface plasmon resonance (SPR), which 

is affected by factors like the metal type, particle size and 

shape, and surrounding medium [48]. This resonant 

oscillation of free electrons in the presence of light, 

known as localized surface plasmon resonance (LSPR), 

enhances their optical and photothermal properties [47]. 
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The unique optical responses of noble metal 

nanoparticles, due to their superior LSPR characteristics, 

allow for the visual detection of various analytes with the 

naked eye [49]. Additionally, the plasmon band in 

colloidal solutions of gold, silver, or copper contributes 

to their substantial absorption in the visible spectrum 

[50]. These properties are particularly beneficial in the 

detection and treatment of diseases such as cancer, HIV, 

TB, and Parkinson's disease [51]. Noble metal 

nanoparticles' size- and shape-dependent plasmon 

resonance is crucial for the detection of pollutants [52]. 

For example, proteins and bacteria can be efficiently 

detected using varying sizes of unaltered noble metal 

nanoparticles in a colorimetric sensor array, which has 

significant implications for medical diagnostics [53]. 

Maintaining the size and form of these nanoparticles 

during the extraction process is essential for the efficient 

and selective identification of pollutants in 

environmental water [54]. Noble metal nanostructures 

also serve as effective adsorbents for identifying and 

eliminating contaminants in drinking water due to their 

size- and shape-dependent characteristics [55]. The 

surface plasmon resonance of conduction electrons in 

these nanoparticles, which depends on the particle 

morphology and shape evolution, plays a key role in their 

application in visible light harvesting processes and 

metal-semiconductor composite photocatalysts [56,57]. 

The distinctive properties of noble metal nanoparticles, 

including their LSPR and optical enhancements, make 

them highly suitable for a wide range of applications in 

detecting contaminants in water bodies. Careful selection 

of nanoparticle size and composition can significantly 

improve the effectiveness of color sensing tests, thereby 

advancing the identification and mitigation of 

environmental pollutants [58]. 

4. Detection Mechanism as sensors 

Nanoparticles serve as versatile sensors, detecting 

analytes through alterations in colorimetric, fluorescent, 

or electrochemical properties, enabling specific detection 

based on analyte concentration [59]. Various methods for 

heavy metal ion determination include atomic absorption 

spectroscopy, atomic fluorescence spectrometry, and 

electrochemical sensing platforms. Among these, 

colorimetric sensing technology utilizing nanoparticles 

has emerged as an efficient approach[60]. Noble metal 

nanoparticles serve as highly accurate and sensitive 

visual biosensors for detecting various compounds, 

offering a simple and reliable method for visual 

quantification [61]. Colorimetric assays employing gold 

nanoparticles enable ultrasensitive and selective 

detection of heavy metal ions such as mercury, offering 

on-site and real-time analysis [62]; [63]. Additionally, 

the interaction between noble metal nanoparticles and 

various molecules enables accurate and sensitive 

detection of toxins, nucleic acids, and proteins [64]. 

Nanoparticle surface modifications facilitate the 

determination of analytes, offering broad prospects in 

sensing pollutants [65]. Electrochemical detection 

methods utilizing nanomaterials exhibit increased 

sensitivity and decreased detection limits, promising 

applications in diagnostics and environmental safety 

[66]. Furthermore, noble metal nanoparticles serve as 

plasmonic nanosensors, enabling single-molecule 

detection through surface-enhanced Raman scattering 

and fluorescence [67]. Surface functionalization of metal 

nanoparticles enhances their optical and electronic 

properties, expanding their applications in sensing [68]. 

Noble metal nanoparticles, easily functionalized through 

simple chemistry, offer enhanced capabilities in specific 

analyte detection [69]. For instance, NADH-

functionalized silver nanoparticles provide highly 

selective optical sensing of mercuric ions[70].The 

synergy between platinum nanoparticles and single-wall 

carbon nanotubes enhances sensitivity towards hydrogen 

peroxide, exemplifying surface functionalization 

strategies [71]. Overall, noble metal nanoparticles 

exhibit unique properties and diverse applications in 

biomedicine, including therapeutics, diagnostics, and 

sensing[72]. 

In conclusion, the integration of noble metal 

nanoparticles into sensing platforms offers remarkable 

potential for highly sensitive and selective detection of 

various analytes, spanning environmental monitoring to 

biomedical applications. These nanoparticles, with their 

facile functionalization and unique optical and electronic 

properties, hold promise for advancing sensing 

technologies in diverse fields. 

5. Applications of Noble Metal Nanoparticles as 

sensors 

5.1 Gold Nanoparticles 

Various innovative methods leveraging the unique 

properties of gold nanoparticles have been developed for 

sensitive and selective detection of contaminants in water 
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sources, addressing critical environmental and public 

health concerns. Label-free gold nanorod-based 

plasmonic sensing effectively detects arsenic(III) by 

suppressing the oxidative shortening of gold nanorods, 

enabling real-time assessment of contamination levels 

[73]. A colorimetric assay utilizing a DNAzyme 

sensitive to lead(II) ions has been devised for lead 

contamination detection in water [74]. Lead exposure 

poses severe health risks, particularly for children, 

affecting neurological development and causing long-

term cognitive impairments. Moreover, gold plasmon 

nanoparticles functionalized with 3-mercaptopropionic 

acid (3-MPA) present a promising approach for water 

quality monitoring, offering selective detection and 

quantification of chromium(III) [75]. Chromium 

contamination in water sources, often stemming from 

industrial activities, can have serious health implications, 

including carcinogenic effects, underscoring the 

importance of sensitive detection methods for effective 

environmental remediation. Mercury(II) ions, another 

hazardous contaminant in water, can be detected using 

gold nanoparticles functionalized with label-free 

oligonucleotide sequences via thymine-Hg(II)-thymine 

coordination chemistry[76]. Ultrasensitive detection of 

mercury ions in water is achieved using a DNA-

functionalized Molybdenum Disulfide nanosheet/gold 

nanoparticle hybrid sensor, surpassing EPA-

recommended levels[77]. Furthermore, a gold-

nanoparticle-Rhodamine 6 G-based fluorescence sensor 

enables sensitive and selective detection of mercury(II) 

ions in water[78]. Various other applications include 

detection of ractopamine using a molecular imprinting 

polymer (MIP)--based electrochemical sensor  [79], 

copper ion detection with high sensitivity using an 

electrochemical sensor[80], and low detection limits for 

mercury and ziram in water using gold nanoparticle-

based microfluidic sensors [81]. Gold nanoparticles 

derived from Solanum trilobatum leaf extract exhibit 

high sensitivity in detecting cadmium(II) ions [82] , 

while ultrasensitive silver ion detection is achieved using 

gold nanoparticles [83]. Cyanide detection in water is 

enabled by gold-nanocluster-based fluorescence sensors 

[84] and hazardous anions can be detected using gold 

nanoparticle-based nanosensors [85] . Moreover, nitrite 

ions in drinking water can be detected using gold 

nanoparticles based on their plasmonic properties and 

catalytic effect [86]. Thiolated azido derivatives and 

active esters modify gold nanoparticles for hydrogen 

sulfide detection in lake water [87] and a colorimetric 

sensor array composed of citrate-capped gold 

nanoparticles is proposed for detecting and 

distinguishing various organophosphate pesticides in 

water sources [88]. Escherichia Coli O157:H7 may be 

quickly and accurately detected in water samples by 

employing an electrocatalytic gold nanoparticle 

immunosensing assay [89].  Lastly, organophosphorus 

and carbamate pesticide detection in complex solutions 

can be achieved using a rhodamine B-covered gold 

nanoparticle-based assay [90]. These innovative methods 

represent significant advancements in nanotechnology 

and analytical chemistry, offering versatile approaches to 

address diverse challenges in water quality monitoring. 

5.2 Silver Nanoparticles  

Silver nanoparticles, a type of noble metal, are important 

in various applications due to their aesthetic appeal, 

corrosion resistance, and high thermal stability [91]. 

They are particularly useful in contamination sensing due 

to their broad linearity range and excellent selectivity 

towards cationic Ag+ ion activity [92]. These 

nanoparticles can interact with heavy metals in water 

samples in a highly effective and selective manner, 

contributing to potential water remediation applications 

[93]. They provide reliable data for risk assessment and 

environmental monitoring when detecting heavy metals 

in surface water [94]. In conjunction with nitrogen-doped 

graphene, they form a highly sensitive biosensing 

platform with a low detection limit, enabling the 

identification of pesticides [95]. They can also employ 

UV light scattering and post-sample fluorescence 

detection to identify heavy metal ions in water, such as 

mercury, lead, and methylmercury [96]. Furthermore, 

they can detect potentially dangerous Hg(II) ions in water 

at micromolar concentrations and across a wide pH range 

[97]. When coated on chitosan foam, they can actively 

collect analytes in solution and on solid surfaces, proving 

useful for sensing pollutants [98]. With a linearity of 0.97 

and a limit of detection of 1.5 ppb, they are effective for 

sensing pollutants like mercury [99]. They can rapidly 

degrade water contaminants like methylene blue, methyl 

orange, and naphthol green B, and detect harmful 

dithiocarbamate fungicide [100]. Aromatic polyphenols 

such as gallic acid, pyrogallol, and tannic acid can be 

visually detected in water samples using silver 

nanoparticles [101]. Silver nanoparticles stabilized with 
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cysteamine are highly sensitive and selective for the 

rapid colorimetric detection of Hg(II) ion in water, with 

a limit of detection of 0.273 nM [102]. At low 

concentrations, heavy metals in water can be effectively 

detected using an electronic tongue that combines silver 

nanoparticles with electrospun nanofibers [103]. Silver 

nanoparticles capped with 3-mercapto-1propanesulfonic 

acid sodium salt, also known as AgNPs-3MPS, exhibit a 

specific sensitivity of 500 ppb for the detection of heavy 

metal ions Ni(II) and Co(II) in water [104]. By enhancing 

bulk conductance and differentiating between various 

heavy metal ions through sensor and frequency 

modifications, silver nanoparticles in ternary 

nanocomposites can detect heavy metals in water [103]. 

They detect heavy metals by observing changes in the 

aggregation of the nanoparticles in solution through 

optical transduction [105]. In conclusion, silver 

nanoparticles offer a versatile and effective approach for 

the detection and remediation of water contaminants. 

5.3 Platinum nanoparticles 

Platinum nanoparticles, known for their diverse sizes and 

forms, find extensive applications in various fields in 

sensing [106,107]. Particularly notable are their 

biomedical uses, especially in angiogenesis and cancer-

related illnesses, where they play pivotal roles in 

detection [102]. Leveraging their unique properties, 

platinum nanoparticles are integral components in highly 

sensitive impedimetric aptasensors, facilitating the 

selective detection of pesticides such as acetamiprid and 

atrazine [108]. Moreover, nanoelectrodes fashioned from 

platinum demonstrate efficacy in detecting heavy metals, 

while glassy carbon electrodes coated with platinum 

nanoparticles exhibit promising arsenic detection 

capabilities, with a notable limit of detection of 2.1 +/- 

0.05 ppb [109]. Enhanced sensitivity is further 

exemplified by platinum nanoparticles combined with 

DNAzymes, boasting a detection limit of 25 nM for 

heavy metal ions [110]. Notably, the sensitivity of 

platinum nanoparticle electrodes for heavy metal ion 

detection is augmented by increased layer electrode 

thickness, showcasing commendable repeatability and 

reusability [111]. Furthermore, boron-doped diamond 

microelectrodes enhanced with platinum nanoparticles 

enable the detection of arsenite in water with remarkable 

precision, achieving a detection limit of 0.5 ppb [112]. 

Beyond heavy metal detection, platinum nanoparticle-

modified electrodes prove instrumental in rapidly 

detecting Escherichia Coli, with a detection limit of 20 

cfu/mL and a detection time of less than 4 hours [113]. 

Similarly, these nanoparticles exhibit prowess in 

identifying hypoxanthine, a sensitive indicator of aquatic 

product freshness, with exceptional selectivity and 

recovery rates [114]. Notably, platinum nanoparticles 

capped with citrate emerge as promising candidates for 

field detection in various samples, including 

environmental, biological, and dietary matrices, capable 

of detecting Hg(II) ions with an impressive detection 

limit of 8.5 pM [115]. 

5.4 Palladium Nanoparticles 

Palladium nanoparticles showcase remarkable potential 

in water sensing applications, boasting nearly 100% 

recovery rates for various pollutants alongside excellent 

sensitivity, repeatability, and stability [116]. They serve 

as key components in enhancing analytical performance, 

such as in simultaneous detection setups for direct yellow 

50, tryptophan, carbendazim, and caffeine in water 

samples, when integrated into graphite pencil electrodes 

[117]. Moreover, encapsulated palladium nanoparticles 

offer effective treatment solutions for water 

contaminated with trichloroethylene, efficiently 

dechlorinating the chemical in less than an hour [118] 

Palladium nanoparticles (PdNP’s) integrated into porous 

activated carbons (PACs) enable the creation of 

electrochemical sensors sensitive enough to detect 

harmful metal ions like Hg(II), Pb(II), Cu(II), and Cd(II) 

[119]. They also play crucial roles in electrochemical 

stripping analysis and ion-selective detection systems, 

enhancing sensitivity and lowering detection limits for 

heavy metals [120]. Additionally, palladium 

nanoparticles demonstrate utility in ultrasonic slurry 

sampling electrothermal vaporization inductively 

coupled plasma mass spectrometry for detecting heavy 

metals like Zn, As, Cd, Sb, Hg, and Pb in biological 

samples [121]. Furthermore, they serve as highly 

sensitive and selective sensors for nickel ion detection, 

with remarkable reliability and detection limits [122]. In 

the realm of electrocatalytic detection, palladium 

nanoparticles exhibit promising sensitivity and detection 

limits, particularly notable in detecting hydrazine [123]. 

Also, The PdNPs on reduced Graphene oxide Rotating 

Disk Electrodes(RDE), with a diameter of 3.7 ± 1.4 nm, 

exhibits a high degree of stability in detecting trace 

hydrazine in wastewater, indicating its potential utility as 

an electrochemical sensor [124]. Their catalytic activity 
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extends to water-based Sonogashira coupling reactions, 

showcasing potential for water-based environmental 

sensing applications [125]. Overall, palladium 

nanoparticles, with their exceptional recovery rates, 

stability, and catalytic properties, emerge as valuable 

assets for environmental sensing in water. 

 

Table 1 Noble metal nanoparticles as sensors for various contaminants with their sensitivity 

Nanoparticle 

Sensor 

Contaminant Sensor type Sensitivity Reference 

Gold 

Nanoparticles 

Arsenic(III) Plasmonic sensor 10 – 500 ppb [73] 

Lead(II) Colorimetric sensor 100 nM - 200 

muM 

[74] 

Chromium(III) Colorimetric sensor 0.34 ppb [75] 

Mercury(II) Colorimetric sensor 50nM [76] 

Mercury(II) Fluorescence 

sensor 

5 x10-10 - 3.5 

x10-8 mol/L 

[78] 

Mercury(II) Electrochemical 

sensor 

0.1nm [77] 

Cadmium(II) Plasmonic sensor 0.058/mM -

0.095/mM 

[82]. 

Copper(II) Electrochemical 

sensor 

< 1pm [80] 

Silver(I) Electrochemical 

sensor 

470 fM [83] 

Ractopamine Electrochemical 

sensor 

0.002 - 0.1 μM [79] 

Dithiocarbamate Microfluidic sensor 16 μg/L [81] 

Anionic fluorosurfactants Optical Sensors 10 ppb [85] 

Nitrite Ions Colorimetric sensor 20 to 35 µM [86] 

Hydrogen Sulfide Colorimetric sensor 0.2 µM [87] 

Organophosphate pesticides Colorimetric sensor  120-400 

ng.m/L 

[88] 

Organophosphorus pesticide Fluorescence 

sensor 

0.1 - 1 μg/L [90]. 

Escherichia Coli O157:H7 Electrochemical  

(Immunosensing 

Assay) 

309 CFU/mL [89] 

Escherichia Coli XL1 Electrochemical 

Sensor 

100 CFU/mL [66] 

Silver 

Nanoparticles 

copper(II) and cobalt(II) ions Fluorescent sensor 40 ppb [126] 

Organophosphate and carbamate pesticides Chemiluminescent 

(CL) sensor array 

24 μg/mL [127] 

Dithiocarbamate 

fungicide 

Spectrophotometric 

and 

electrochemical 

0.18ppm [100] 

Cd(II), Cu(II), Ni(II), and Pb(II) Electrochemical 

(electronic tongue) 

10nM/L [103] 
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Nile Blue A (NBA) 

Rhodamine 6G (R6G) 

Pesticides - triazophos, methidathion and 

isocarbophos 

- 5pg, 

10ppb 

[128] 

Aptamer-based Pesticide Electrochemical 3.3 × 10−14 M [95] 

Ni, Zn, Ba, As, Pb, Co, Cr, and Cu    

Ni(II) and Co(II) Colorimetric 0.5–2.0 ppm [104] 

Mercury, lead, and methylmercury  Electro-optical Mercury - 

2ppm 

Methylmercury 

– 8ppm 

Lead – 15ppm 

[96] 

Hg(II) ion optical sensor 0.55ppb [102] 

Hg(II) Colorimetric  [97] 

Aromatic ortho-trihydroxy phenols (gallic 

acid, pyrogallol and tannic acid) 

Colorimetric 1–50 mM [101] 

Cd (II) Optical 5ppm [93] 

Hg(II) Optical 1.5ppb [99] 

Platinum 

Nanoparticles 

As(III) Electrochemical 0.5ppb [112] 

Escherichia Coli Electrochemical 20 cfu/mL [113] 

Hg(II), Cu(II) and Ag(II)    

Hg(II) Colorimetric 50-500 nM [129] 

Pb(II) Biosensor 25 nM [110] 

As(III),  Electrochemical 2.1 ± 0.05 ppb [109] 

Hg(II) Colorimetric 8.5 pM [115] 

Pesticides: acetamiprid and atrazine Electrochemical 1pM [108] 

Hypoxanthine Fluorescent 

biosensor 

2.88 μM [114] 

Palladium 

Nanoparticles 

Hydrazine Electrochemical 1.8 mM [123] 

Direct yellow 50, 

tryptophan, carbendazim and caffeine 

Electrochemical Direct Yellow - 

0.99–9.9 

μmol/L 

Tryptophan- 

1.2–12 μmol/L 

Carbendazium 

-0.20–1.6 

μmol/L 

Caffeine - 25–

190 μmol/L 

[130] 

Zn, As, Cd, Sb, Hg 

and Pb 

 Zn - 1.9 – 3.6 

ng/g  

As - 0.2 – 0.4 

ng/g 

Cd - 0.5 – 0.8 

ng/g  

[121] 
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Sb - 0.1 – 0.2 

ng/g 

Hg - 0.4 – 0.8 

ng/g  

Pb - 0.4 – 0.6 

ng/g 

Cd(II), Pb(II), Cu(II), and Hg(II) Electrochemical Cd(II) - 66.7 

µA/µM/cm2,  

Pb(II) - 53.8 

µA/µM/cm2,  

Cu(II) - 41.1 

µA/µM/cm2, 

and  

Hg(II) - 50.3 

µA/µM/cm2 

 

[119] 

Ni(II) Fluorescent sensor 7.26 × 10−9 m [122] 

As(V), As(III) - 0.029 g/L [131] 

4-nitroaniline (4-NA) Electrochemical 0.17 µmol/L [116] 

6. Future scope and conclusion 

In conclusion, noble metal nanoparticles have emerged 

as indispensable tools in water pollutant sensing, offering 

unparalleled sensitivity, selectivity, and versatility. Their 

integration into sensor devices has facilitated rapid and 

accurate detection of pollutants in water sources, 

enabling proactive measures to safeguard public health 

and environmental integrity. However, the journey does 

not end here. The future scope for noble metal 

nanoparticle-based sensing is vast and promising. 

Further advancements in nanoparticle synthesis 

techniques, sensor design, and detection methodologies 

hold the potential to revolutionize water quality 

monitoring. Integration with emerging technologies such 

as artificial intelligence and Internet of Things can 

enhance sensor capabilities, enabling real-time, 

autonomous monitoring of water resources. 

Additionally, interdisciplinary collaborations between 

researchers, policymakers, and industry stakeholders are 

essential for translating research findings into practical 

solutions and addressing the evolving challenges of 

water pollution. As we strive towards achieving 

sustainable water management practices, noble metal 

nanoparticles will continue to play a pivotal role in 

ensuring safe and secure access to clean water for present 

and future generations. 
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