www.jchr.org

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727



## Synthesis and Characterization of Ag<sub>2</sub>S Doped TiO<sub>2</sub> Nanocatalysts for the Photocatalytic Degradation of Methylene Blue Dye Under UV Light Irradiation

### T. Arunkumar <sup>a</sup> and M. Shanthi <sup>a\*</sup>

Department of chemistry, Annamalai University, Annamalai Nagar, India.

(Received: 04 February 2024

Revised: 11 March 2024

Accepted: 08 April 2024)

### **ABSTRACT:**

KEYWORDS Ag<sub>2</sub>S – TiO<sub>2</sub>, MB dye, Photocatalyst, UV light, and operational parameters. The Ag<sub>2</sub>S - TiO<sub>2</sub> nanocatalysts were effectively synthesized using the precipitationthermal decomposition method. Characterization of the prepared catalyst was conducted through X-ray diffraction (XRD), Field emission scanning electron microscope (FE- SEM), Energy dispersive spectra (EDS), Ultra-violet diffuse reflectance spectra (UV- DRS), Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) measurements. The photocatalytic activity of  $Ag_2S - TiO_2$  was examined for the deterioration of Methylene blue (MB) dye in aqueous solution under UV-A light. Ag<sub>2</sub>S – TiO<sub>2</sub> demonstrated superior effectiveness compared to other photocatalysts (ZnO, Ag<sub>2</sub>S, TiO<sub>2</sub>, etc.) at pH 7 for MB dye mineralization. The effect of operational parameters including photocatalyst amount, dye concentration, and initial pH on MB dye photomineralization was analyzed. Active species trapping revealed the significant roles of holes, electrons, hydroxyl radicals, and superoxide radicals in the photocatalytic deterioration of MB dye. A proposed mechanism for dye deterioration using  $Ag_2S - TiO_2$ was elucidated. Mineralization of MB dye was further confirmed through Chemical Oxygen Demand measurements. The catalyst exhibited reusability. Additionally, antibacterial activity evaluation revealed that  $Ag_2S - TiO_2$  showed potential as an effective antibacterial agent.

#### 1. Introduction

Pollution can be influenced by different factors such as population increase, deforestation, river damming, wetland destruction, industrial activities, mining, agriculture and energy consumption. Mainly, water contamination is previously associated with population industrial expansion. Wastewater growth and components incorporating chemical like dyes, insecticides, and herbicides including biological pollutants (bacteria and viruses), was thrown into rivers and lakes by industry, and residential activities eventually ending up in the oceans. Traditionally, different treatments like flocculation, activated carbon adsorption, and filtering have been utilized for water purification. Nevertheless, these strategies are often the most costly and ineffective ones [1-3]. The advanced oxidative process

(AOP) is a unique and more efficient way of dealing with non-biodegradable contaminants [4]. The AOP uses more robust oxidants O<sub>3</sub>, 'OH than molecular oxygen which are created by UV radiation, ultrasound, or both catalysts during the breakdown of organic contaminants [5]. In the AOP method, a semiconductor has been utilized to produce electron-hole pairs through photo-activation of the semiconductor's material. Significantly, low-energy UV light can be utilized to disintegrate refractory wastewater contaminants in the presence of a catalyst by exploiting photo-generated positive holes and electrons are potent oxidants and excellent reductants [6].

Amidst various semiconductors, nanoparticles of  $TiO_2$ (with a bandgap energy of 3.2 eV) and ZnO (with a bandgap energy of 3.3 eV) have garnered significant

www.jchr.org

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727

attention due to their broad potential applications, like catalysis, biology, sensing, electrical, and electronics [7]. Recently, heterogeneous semiconductors have attracted considerable interest owing to their advantageous characteristics, including low toxicity, affordability, and versatile optical, chemical, and electrical properties, as well as their ecologically friendly qualities, they are potential photocatalysts in the photocatalytic process. Nowadays, the Dopant materials can improve photocatalyst efficiency bv changing the semiconductor's band gap [8], and purities [9], creating oxygen vacancies [10], and providing a unique surface area for organic molecule adsorption and electron trapper activities [11]. They can be categorized into two types: interstitial and substitutional dopants. The radius of the doped ion is smaller than that of the lattice ions or lattice spaces, allowing it to penetrate the crystal cell of the metal oxide surface in an interstitial fashion, when the dopant substitutes the lattice ion or the lattice oxide [9]. Furthermore, the doped ion in the catalyst crystal lattice has been shown to influence the electrical properties of the generated nanocatalysts enhancing its adsorption in the visible region [12-14, 9]. Because of their different shapes (spherical, cubic, hexagonal, triangle, square etc.), properties, and applications (like photocatalysis, photoluminescence,

sensors, antibacterial, and more), nanoscale metal oxides and chalcogenides have been examined. Similarly, by utilizing the co-dopant compounds, the researchers hoped to improve the semiconductor properties of the material **[15]**. Several criteria determined the effect of doping on photocatalyst activity, including the initial concentration of pollutants, the physicochemical properties of the catalyst, and the concentration of the dopant. The photocatalytic activity decreases when the dopant concentration exceeds the appropriate doping concentration. This diminishes

the catalyst's surface area narrows the space charge and boosts light penetration into the photocatalyst surface, potentially extending beyond its surface layer. Consequently, the reassembling of electron-hole pairs was more likely to occur **[16-18]**.

It is possible to dope a semiconductor with the inclusion of transition metals, nonmetals, metals, alkaline earth metals or noble metals has been explored. Noble metals like Ag, Pt, and Au have attracted attention as doping



agents because of their abilityto scavenge photogenerated electrons and enhance the separation of electron-hole pairs in the photocatalytic process. This enhances the semiconductor's photocatalytic activity [19, 20] and finally improves the organic pollutant adsorption onto the photocatalyst surface [21]. Especially Silver nanocatalysts have grown in popularity as a dopant among other noble metals due to their catalytic activity, size, shape-dependent optical properties, and promising applications in chemical and biological sensing, including surface-enhanced Raman scattering (SERS), metal fluorescence (MEF), localized surface plasmon resonance (LSPR), and antibacterial activity [22]. Furthermore, the silver is one of the most affordable noble metals. This study will concentrate on utilizing a semiconductor photocatalyst modified with silver to degrade organic pollutants (methylene blue dye). Here methylene blue dye (MB) solution serves as a model water pollutant, because of its frequent use as an essential colouring ingredient by chemical industries. Methylene blue dye is one of the most thoroughly researched organic pollutants and it is eventually discharged into water bodies through effluents and fervently recommended to remove the persistent pollutants from the aqueous solution [23-26]. The combination of TiO<sub>2</sub> with low band gap semiconductors like CdSe [27] and CdS [28] photocatalysts effectively removes the pollutants under visible light. The use of nanoscale coupled semiconductors to promote charge separation and minimize or prevent charge carrier recombination would considerably improve TiO<sub>2</sub> photocatalytic performance [29, 30]. Ag<sub>2</sub>S is well-suited for this purpose due to its characteristics as a direct narrowband gap semiconductor [31], offering good chemical stability and exceptional optical responses. Presently, it finds applications in optical and electronic devices like photovoltaic cells, photoconductors, infrared detectors [32, 33], and superionic conductors [34, 35]. However, there have been limited reports on the utilization of the Ag<sub>2</sub>S-TiO<sub>2</sub> composite photocatalyst system for environmental purification under UV light irradiation.

### 2. Experimental

#### Materials

The commercial non-azo dye MB was purchased from Aldrich. Its chemical structure and absorption spectrum





are depicted in **Fig. 1**. Silver nitrate (99%), Sodium sulfide (99%), and titanium isopropoxide (99%) of AnalaR grade (Himedia), along with 2-propanol (99.5%

1.0





Fig. 1 The chemical structure and absorption spectrum of MB dye

### Synthesis of Ag<sub>2</sub>S-TiO<sub>2</sub> photocatalysts

About 0.676g of AgNO<sub>3</sub> was dissolved in 100 mL of distilled water (0.04 M) to prepare Solution I. Solution II was prepared by dissolving 0.184g of Na<sub>2</sub>S in 100 mL of distilled water (0.02 M). The two solutions were mixed and stirred, resulting in the formation of an Ag<sub>2</sub>S suspension. Subsequently, 12.5mL of titanium isopropoxide and 80mL of 2- propanol were added to the Ag<sub>2</sub>S suspension, which was then magnetically agitated for four hours. The resulting suspension was purified, cleansed, and arid in an air oven at 100°C for 12 hours. The resulting solution was sintered in a muffle furnace for 5 hours at 450°C. The same procedure was followed to synthesize pure TiO<sub>2</sub>.

### **UV-Visible Spectroscopic Analysis**

The deteriotation process was carried out using the Heber Multi-lamp Photoreactor HML MP 88 under UV- A light at a wavelength of 365 nm. About 50 mL of MB dye (3 X  $10^{-4}$  M) containing the sufficient quantity of nanocatalysts, was agitated the dark for 30 minutes before illumination. The UV-visible spectrophotometer was employed to track variations in MB concentration based on its distinctive absorbance at 291.5 nm and the

decreased absorbance reflects the deterioration of dye occurred.

spectroscopic grade), H<sub>2</sub>SO<sub>4</sub>, or NaOH, were utilized as

### **Characterization techniques**

The powder X-ray diffraction pattern was analyzed using an X'Pert PRO diffractometer with Cu-K $\alpha$  radiation (wavelength 1.5406 Å) at a maximum power of 2.2 kW. Crystalline phases and peak positions were identified and determined through comparative analysis with standard files. The morphology of the nanocatalysts was examined using a JOEL JSM-6701F cold field emission scanning electron microscope (FE- SEM), with samples mounted on a gold substrate and inspected at various magnifications. Diffuse reflectance spectra of the synthesized nanocatalysts were examined using a Shimadzu UV-2450 diffuse reflectance spectrometer.

X-ray photoelectron spectra of the catalysts were acquired using an ESCA-3 Mark II spectrometer (VG Scientific Ltd., England) with Al K $\alpha$  (1486.6 eV) radiation as the source, and a calibration process was conducted to determine the binding energy of the nanocatalysts. Photoluminescence (PL) spectra were obtained using a Perkin Elmer LS 55 fluorescence spectrometer. The nanocatalyst was dispersed on a carbon tetrachloride surface and excited with light at

www.jchr.org

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727



300 nm. UV spectra measurements for the synthesized nanocatalysts were performed using a SHIMADZU UV 2600 PC UV-visible spectrophotometer.

**Chemical oxygen demand (COD) measurements** The chemical oxygen demand (COD) method was employed to determine the quantity of oxygen consumed by reactions in a given solution. The dye sample underwent reflux with HgSO<sub>4</sub>, a known volume of standard  $K_2Cr_2O_7$ ,  $Ag_2SO_4$ , and  $H_2SO_4$  for 2 hours, followed by titration with standard Ferrous Ammonium Sulphate (FAS) using ferroin indicator. A blank titration was conducted in place of the dye samples. The COD was then calculated using the provided equation (Eq. 1). COD = (Blank titre value – dye sample titre value) X normality of FAS X 8 X 1000

Volume of sample (1)

#### 3. Results and Discussion X-ray diffraction (XRD) spectroscopy

The crystalline size of the synthesized nanocatalysts was determined using XRD spectra as illustrated in **Fig. 2.** The X-ray diffraction peaks were located at  $25.3^{\circ}$ ,  $38.03^{\circ}$ ,  $47.68^{\circ}$ ,  $54.65^{\circ}$ ,  $62.74^{\circ}$ ,  $69.3^{\circ}$ , and  $75.0^{\circ}$  corresponded to crystallographic planes (101), (004), (200), (211), (204), (220) and (215) respectively (anatase phase of TiO<sub>2</sub> (JCPDS 89-4203). The

crystalline anatase phase of TiO<sub>2</sub> has been identified to be additional active than the rutile and brookite phases [36]. The widened diffraction peaks of the synthesized nanocatalysts with Ag<sub>2</sub>S (doped) were shifted from 25.3 to 25.7 respectively. The wideness of the peak indicates that the particle sizes of the crystalline phase were reduced [37]. However, in the instance of Ag<sub>2</sub>S nanocatalysts, there was no indication of any diffraction peaks due to the usage of a low concentration of Ag<sub>2</sub>S and its negligible effect on the phase of the nanocatalysts [37]. The mean crystalline size of the nanocatalysts was calculated using the classical Scherrer equation (D =  $K\lambda/\beta\cos\theta$ ), where D represents the crystallite size,  $\lambda$  denotes the wavelength of the X-ray radiation (Cu- Ka-1=1.54060), K is the Scherrer constant (generally considered to be 0.9 for spherical shapes),  $\beta$  is the full width at half-maximum height, and  $\theta$  signifies the Bragg's diffraction angle. The mean crystalline sizes of the  $TiO_2$  and  $Ag_2S-TiO_2$ nanocatalysts were found to be 34.8 nm and 11.6 nm, respectively. The average size of the Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts was reduced when compared to that of the TiO<sub>2</sub> nanocatalysts. The difference in the particle size could be accounted for by the ionic radius of the nanocatalysts.



Fig. 2 Powder XRD spectrum of synthesized (a) bare TiO<sub>2</sub>, (b) Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts

www.jchr.org

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727



### Field Emission Scanning Electron Microscopy (FE- SEM) Analysis

The superficial structure of the synthesized  $TiO_2$  and  $Ag_2S$ - $TiO_2$  was analyzed using Field Emission Scanning Electron Microscopy (FE-SEM). The configuration and shape of the nanocatlysts were depicted in **Fig. 3 a-d** at various magnifications.

Fig. 3 a, b represented the FE-SEM images of bare  $TiO_2$  and they show slightly aggregated and spherical

particles. The FE-SEM images of  $Ag_2S$ -TiO<sub>2</sub> **Fig. 3 c, d** can't show the aggregation. The average particle size was in the nanoscale region. The resultant particles are significantly compact with orderly arranged in the homogeneous medium, which can be attributed to the increase and densification of  $Ag_2S$  on TiO<sub>2</sub>.



Fig. 3 FE-SEM images of (a-b) bare TiO<sub>2</sub>, (c-d) Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts

### **Energy Dispersive (EDS) Spectroscopy**

The Energy DispersiveSpectroscopy (EDS) of synthesized nanocatalysts are displayed in

**Fig. 4 e.** The resulting EDS spectra reveal that the Ti, O, Ag and S elements are presented in the synthesized nanocatalysts.



Fig. 4 EDS spectrum of Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts

www.jchr.org

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727



#### **UV-DRS** spectroscopy

The diffude reflectance spectra of prepared  $TiO_2$  and  $Ag_2S-TiO_2$  are shown in **Fig. 5 a, b.**  $Ag_2S-TiO_2$  exhibits higher absorption than bare  $TiO_2$  in both UV and Visible regions, potentially enhancing the catalyst's activity.

The UV-visible spectra, recorded in diffuse reflectance mode (R), were converted into the Kubelka-Munk function F(R) to differentiate the extent of light absorption from scattering.



The bandgap energy (Eg) of each sample was calculated from the intersection of a straightaway derived from the graph of the K-M function versus the absorbed photon energy (E) (Eq. 2). The obtained band gap energy values are 3.15 eV and 2.95 eV for the bare TiO<sub>2</sub> and Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts, respectively **Fig. 6 a, b**. Ag<sub>2</sub>S-TiO<sub>2</sub> absorbs more ultraviolet and visible light than bare TiO<sub>2</sub>, which may boost the activity of the nanocatalysts.



**Fig. 5** DRS of (a) bare  $TiO_2$ and (b) Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts

#### Photoluminescence (PL) Spectroscopy

The capability of charge carrier entrapment, migration, and shift, in addition to the rapid electron-hole ( $e^--h^+$ ) couplings in semiconductor nanocatalysts, were investigated by photoluminescence spectroscopy (PL). **Fig. 7 a, b** depicts the PL emission spectra of bare TiO<sub>2</sub> and Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts. The



photoluminescence was caused by the reassembling of electron-hole pairs in semiconductor nanocatalysts. The investigated PL spectra of bare  $TiO_2$  have greater intensity than the Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts. The lower emission intensity of the Ag<sub>2</sub>S-TiO<sub>2</sub> indicates that Ag<sub>2</sub>S particles effectively limit charge carrier recombination, which would increase photocatalytic activity.



Fig. 7 photoluminescence spectra of (a) bare TiO<sub>2</sub> and (b) Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts

www.jchr.org

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727



### X-ray Photo Electron (XPS) Spectroscopy

X-ray Photo Electron Spectroscopy detects the chemical states and types of bonds between the nanocatalysts of TiO<sub>2</sub> and Ag<sub>2</sub>S-TiO<sub>2</sub>. The survey X-ray photoelectron spectra of TiO<sub>2</sub> and Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts are given in **Fig. 8 a.** and **Fig. 8 b** shows the Spin-Orbit components ( $2p_{3/2}$  and  $2p_{1/2}$ ) of the Ti 2p peaks at 458.3 and 464.0 eV, thus indicating the presence of Ti4+ **[38]**. The presence of

oxygen species is demonstrated by the appearance of O 1s peak at 529.69 eV in **Fig. 8 c [39]**.

The resulting Ag  $3d_{5/2}$ , and Ag  $3d_{1/2}$  peaks are attributed at 367.5 eV and 373.61 eV in **Fig. 8 d** respectively. In this spectra, there is no splitting of Ag  $3d_{5/2}$  and Ag  $3d_{1/2}$  peaks, indicating that Ag in Ag<sub>2</sub>S-TiO<sub>2</sub> exists solely as an Ag+ ion [**40**]. Sulphur  $2p_{3/2}$  occurred at 168.08 eV **Fig. 8 e** [**41**].



**Fig. 8** XPS of Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts: (a) survey spectrum, (b) Ti2p peak, (c) O1s peak, (d) Ag 3d peak and (e) S 2p peak.

### Photocatalytic Activity Investigations

**Fig. 9** shows the remaining amount of MB dye (3 X  $10^{-4}$  M) after UV light irradiation both in the absence and presence of various photocatalysts. The result shows that the utilized Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts for 40 minutes

of UV radiation which provides the 90.3% deterioration efficiency of the MB dye (curve f), significantly. Curve b represents the 55.3% decreased concentration of the MB dye with the same technique without UV light irradiation due to the catalyst adsorbed on the dye

www.jchr.org

And and a second second

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727

molecule. The resulting blank reaction was permitted to proceed in the existense of UV irradiation and a negligible concentration (0.5%) was measured (curve a). These results indicated the successful deterioration efficiency of MB dye by using UV-A light irradiation and the significant photocatalytic activity of the Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts. Under the same conditions for the commercial ZnO, TiO<sub>2</sub> and Ag<sub>2</sub>S deterioration rates are 50% (curve d), 63.8% (curve e), and 25.9% (curve c), respectively **Fig. 9**. This reveals that the UV/Ag<sub>2</sub>S-TiO<sub>2</sub> technique degrades the MB dye in more effectively than the other procedures. The effect of operational parameters was explored to determine the optimal circumstances utilized by the Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts.



**Fig. 9** Photodegradability of MB dye using UV Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts: [MB] =  $3 \times 10^{-4}$  mol/L, pH = 7.0±0.1, Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts = 2g/L,  $I_{\rm UV} = 1.381 \times 10^{-6}$  Einstein L<sup>-1</sup> s<sup>-1</sup>, airflow rate = 8.1 mL s<sup>-1</sup>, time = 40 min.

**Fig. 10** illustrates the UV-visible spectra of the solution of MB dye (3 X  $10^{-4}$  M) at various irradiation time intervals. The displayed UV-Vis spectra of the Ag<sub>2</sub>S- TiO<sub>2</sub> nanocatalysts do not show any significant variation during the irradiation and the intensity of the

dye diminished gradually with deterioration at 291.5 nm and 663.5 nm respectively. This diminished intensity indicates that these intermediates do not absorb any light irradiation.



**Fig. 10** The changes in UV-visible spectra of MB on irradiation with UV light in the presence of Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts: [MB] =  $3 \times 10^{-4}$  mol/L, pH =  $7.0\pm0.1$ , Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts = 2g/L, a) 0 min, b) 10 min, c)

www.jchr.org



20 min, d) 30 min, e) 40 min,  $I_{\rm UV} = 1.381 \times 10^{-6}$ Einstein L<sup>-1</sup> s<sup>-1</sup>, airflow rate = 8.1 mL s<sup>-1</sup>.

#### Influence of the operational parameters Impact of pH

The pH of the solution played a crucial role in the photocatalytic deterioration techniques of abundant pollutants **[42, 43].** The photocatalytic deterioration process of the MB dye was influenced by different pH levels ranging from 3-11. Before irradiation, the pH was adjusted and couldn't be monitored during the reaction. Furthermore, the various pH levels of the MB dye were influenced by the surface charge characteristics of TiO<sub>2</sub>,

molecular charge, chemisorption of dye molecules onto the Ag2S-TiO2 surface and hydroxyl radical concentration. The deterioration of the MB dye as a function of irradiation time and pH was depicted in **Fig. 11.** According to the findings, the photocatalytic deterioration capability of Ag<sub>2</sub>S-TiO<sub>2</sub> was greater at neutral pH 7. The adsorption percentages at different pH levels (3, 5, 7, 9 and 11) were provided to 30.9, 42.1, 55.3, 42.3, and 25.1%, respectively. Significantly, the increased deterioration efficiency at pH 7 was owing to the higher absorbance of MB dye on the superficial catalyst.



**Fig. 11** Effect of initial pH on the degradation of MB using UV light/Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts: [MB] =  $3 \Box 10^{-4}$  mol/L, Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts = 2g/L,  $I_{UV} = 1.381 \times 10^{-6}$  Einstein L<sup>-1</sup>s<sup>-1</sup>, airflow rate = 8.1 mL s<sup>-1</sup>, time = 30 min.

#### Impact of the catalyst

The dosage of catalyst was one of the most important criteria in deterioration research. To prevent excessive use of the catalyst, it is essential to determine the removal of dye molecules [44–47]. The photocatalytic deterioration rate was investigated using various catalyst concentrations, scale from 0.5 to 3 g/L. The outcomes are displayed in Fig. 12, as the catalyst concentration increases from 0.5 to 2 g/L at 30 minutes of irradiation and the deterioration percentages can be

increased from 12.6 to 80.0% respectively. As a result, the quantity of  $Ag_2S$ -TiO<sub>2</sub> nanocatalysts has grown, which boosts photon absorption and dye adsorption. If the amount of  $Ag_2S$ -TiO<sub>2</sub> nanocatalysts is increased (over 2 g/L), the rate of elimination decreases due to the presence of the screening effect [48]. Finally, the determined quantity of nanocatalysts loaded for the MB dye deterioration was found to be 2 g/L, and it is the suitable amount of catalyst for effective deterioration.

www.jchr.org

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727





**Fig. 12** Effect of catalyst weight on the photocatalytic degradation of MB using UV light: [MB] =  $3 \times 10^{-4}$  mol/L, pH =  $7.0\pm0.1$ ,  $I_{\rm UV} = 1.381\times10^{-6}$  Einstein L<sup>-1</sup> s<sup>-1</sup>, airflow rate = 8.1 mL s<sup>-1</sup>, time = 30 min.

#### Impact of starting dye concentration

The effects of different concentrations of MB dye deterioration are illustrated in **Fig. 13**. The results revealed that increasing the dye concentration from 1 to 5 x  $10^{-4}$  M resulted in a reduction in deterioration from 93.8 to 41.2% at 30 minutes. The rate of deterioration was directly proportional to the amount of 'OH on the catalyst surface, along with the interaction of 'OH radicals with the dye molecule. Throughout all starting dye concentrations, the catalyst amount and light

intensity remain constant. As the initial dye concentration increased, the path length of the photons entering increased, leading to а diminished photocatalytic deterioration capability at low concentrations; conversely, increasing the concentration boosted photon capture by the catalyst [43]. The substantial dosage of dye accumulated may compete with oxygen and OH-adsorption on the superficial catalyst.





 $I_{\rm UV} = 1.381 \times 10^{-6}$  Einstein L<sup>-1</sup> s<sup>-1</sup>, airflow rate = 8.1 mL s<sup>-1</sup>, time = 30 min.

www.jchr.org

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727



#### Effect of oxidants Impact of H<sub>2</sub>O<sub>2</sub>

The effect of adding  $H_2O_2$  upon the photocatalytic oxidation has been displayed in **Fig. 14**. About 10 mmol of  $H_2O_2$  can boost the deterioration rate from 80 to 92.7% in 30 minutes.  $H_2O_2$  can capture the photogenerated conduction band electron, preventing electron-hole recombination and generating hydroxyl radicals (Eq. 3). Hydroxyl radicals play a crucial role in the deterioration of pollutants [49]. However, the removal rate decreases with high  $H_2O_2$  dosage (beyond 10 mmol) due to the hydroxyl radical scavenging effect of  $H_2O_2$ . Excess hydrogen peroxide reacts with the hydroxyl radical ('OH) to produce hydroperoxy radical ('HO) (Eq. 4, 5). These hydroperoxy radicals were significantly less reactive and do not contribute to the oxidation of the dye [50].

$$e_{(CB)} + H_2O_2 \longrightarrow OH + OH^-$$
 (3)  
At higher dosage,

 $\begin{array}{ccc} H_2O_2 + & OH & & HO_2 + H_2O & (4) \\ HO_2 + & OH & & H_2O + O_2 & (5) \end{array}$ 



Fig. 14 Effect of  $H_2O_2$  on the degradation of MB using UV light/Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts: pH = 7.0±0.1, Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts = 2g/L,

 $I_{\rm UV} = 1.381 \times 10^{-6}$  Einstein L<sup>-1</sup> s<sup>-1</sup>, airflow rate = 8.1 mL s<sup>-1</sup>, time = 30 min.

#### Impact of K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>

The photocatalytic deterioration of the MB dye was examined by increasing the dosage of  $K_2S_2O_8$  from 5 to 20 mg/50 mL and displayed in **Fig. 15**. The addition of  $K_2S_2O_8$  up to 15 mg accelerates deterioration from 80 to 90.3% after 30 minutes and further, addition (above 15 mg) reduces the deterioration [**51**, **52**]. The sulfate radical anion can combine with both the photogenerated electrons and water molecules to produce hydroxyl radicals (Eq. 6-8).

The sulfate radical anion (SO<sub>4</sub><sup>•</sup>) played an important role in the deterioration methods. At large doses of  $S_2O_8^{2-}$  to inhibit the deterioration rate due to the

increasing concentration of  $SO_4^{2-}$  ions. The extra  $SO_4^{2-}$  ions are adsorbed upon the  $TiO_2$  surface to reduce the catalytic activity.

$$SO_{4}^{-} + e^{-}(CB) \longrightarrow SO_{4}^{-} + SO_{4}^{2-}$$
(6)  
$$SO_{4}^{-} + e^{-}(CB) \longrightarrow SO_{4}^{2-}$$
(7)  
$$SO_{4}^{-} + H_{2}O \longrightarrow OH + SO_{4}^{2-} + H^{+}$$
(8)

www.jchr.org

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727





**Fig. 15** Effect of K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> on the degradation of MB using UV light/Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts: pH = 7.0±0.1, Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts = 2g/L,  $I_{\rm UV}$  = 1.381×10<sup>-6</sup> Einstein L<sup>-1</sup> s<sup>-1</sup>, airflow rate = 8.1 mL s<sup>-1</sup>, time = 30 min.

#### Impact of Na<sub>2</sub>CO<sub>3</sub>

**Fig. 16** shows the effect of  $Na_2CO_3$  on the photocatalytic deterioration for MB. This study demonstrated that increasing the addition of  $Na_2CO_3$  reduces the removal efficiency. The result shows the addition of  $Na_2CO_3$  (upto 20 mg) reduces the

removal rate from 80 to 33.7% after 30 minutes **[53]**. The carbonate ion concentration can be increased, and the hydroxyl radical gradually diminishes and significantly reduces the photocatalytic deterioration (Eq. 9).

$$CO^{2-} + OH_3 \longrightarrow OH^- + CO_3$$
(9)





www.jchr.org



JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727

#### **Impact of NaCl**

The MB deterioration was investigated using NaCl and displayed in **Fig. 17**. Additionally, the Cl<sup>-</sup> ions up to 20 mg to the reaction solution resulted in a deterioration rate falling from 80 to 37.2% after 30 minutes. The decrease in the deterioration efficiency

was attributed to the hole scavenging characteristics of chloride ions (Eq. 10), and the dye molecule with the hole competes with these reactions [54].

$$\operatorname{Cl}^{-} + h^{+}_{(\operatorname{VB})} \longrightarrow \operatorname{Cl}^{-}$$
 (10)



Fig. 17 Effect of NaCl on the degradation of MB using UV light/Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts:  $pH = 7.0\pm0.1$ , Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts = 2g/L,

 $I_{\rm UV} = 1.381 \times 10^{-6}$  Einstein L<sup>-1</sup> s<sup>-1</sup>, airflow rate = 8.1 mL s<sup>-1</sup>, time = 30 min.

#### **Catalyst reusability**

Significantly catalyst reusability is crucial to reduce the overall cost of the process. The determined deterioration efficiencies of the dye were discovered in **Fig. 18**. The resulting deterioration of dye at the first, second, third, fourth, and fifth runs were indexed at

90.3, 83.5, 76.2, 68, and 60%, respectively. These results indicate that the  $Ag_2S$ -TiO<sub>2</sub> nanocatalysts had excellent photostability and reusability, with no appreciable decline in photocatalytic activity over five runs in the presence of UV-A light.



**Fig. 18** Catalyst reusability: MB =  $3 \times 10^{-4}$  mol/L, pH =  $7.0\pm0.1$ , Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts = 2g/L,  $I_{UV}$  =  $1.381\times10^{-6}$  Einstein L<sup>-1</sup> s<sup>-1</sup>, airflow rate = 8.1 mL s<sup>-1</sup>

www.jchr.org

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727



#### **Radical Scavengers Test**

The impact of various radical scavengers such as 2- propanol, ethylenediamine tetraacetic acid, and benzoquinone on photocatalytic deterioration was analyzed and displayed in Table 1. In the absence of scavengers, photocatalytic deterioration proceeded at an accelerated rate (90.3%), as illustrated in **Table 1**. When 2-propanol was added, deterioration was reduced (67.2%) due to the scavenger's ability to eliminate hydroxyl radicals ('OH), thereby reducing the deterioration rate. Ethylenediamine tetraacetic acid and

benzoquinone were used to remove  $h^+$  and  $O_2^-$  radical anions, respectively. Additionally, benzoquinone and ethylenediamine tetraacetic acid diminished deterioration, resulting in rates of 55.4% and 43.1%, respectively. All scavengers decreased the deterioration capability of the catalyst, with the inclusion of EDTA crucially reducing the deterioration capability, indicating that holes ( $h^+$ ), radicals (•OH), and radical anions ( $O_2^-$ ) were active species in the deterioration mechanisms.

**Table 1** Effects of different radical scavengers on the photodegradation of MB dye under UV radiation utilizing Ag<sub>2</sub>O-TiO<sub>2</sub> nanocatalysts

| Different radical scavengers    | MB dye degradation percentage (%) |
|---------------------------------|-----------------------------------|
| No scavenger                    | 90.3                              |
| 2-propanol                      | 67.2                              |
| Benzoquinone                    | 55.4                              |
| Ethylenediaminetetraacetic acid | 43.1                              |
|                                 |                                   |

#### Kinetic analysis

The deterioration of MB dye under photocatalysis followed pseudo-first-order kinetics when using the  $Ag_2S$ -TiO<sub>2</sub> nanocatalysts. The provided equation presented the rate expression applicable. The provided equation presented the rate expression applicable for low starting concentrations of the substrate (MB) dye

$$\frac{-d[C]}{dt} = k'[C]$$
(11)

Where k represented the rate constant of pseudo-first order. The deterioration rate constant is detailed in **Table 2**.

Table 2 Rate constants of photocatalytic deterioration of MB dye using UV light/Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts

| Initial concentration of dye X (10-4) mol/L | Degradation |
|---------------------------------------------|-------------|
| 1                                           | 0.0627      |
| 2                                           | 0.0517      |
| 3                                           | 0.0453      |
| 4                                           | 0.0339      |
| 5                                           | 0.0259      |

Adsorption-desorption equilibrium was attained as MB dye accumulated onto the surface of the  $Ag_2S$ -TiO<sub>2</sub> nanocatalysts. The equilibrium concentration of MB dye was determined from the adsorption process and utilized as the starting point for kinetic analysis. By integrating the preceding equation under the limit of C = C0 at t = 0,

$$\frac{\ln [C_0]}{[C]} = k't \qquad (12)$$

Where  $C_0$  represented the equilibrium concentration of the bulk solution,  $C_0$  denoted the equilibrium concentration of MB, and C signified the current concentration. The obtained rate constant of ln (C<sub>0</sub>/C) was plotted against the deterioration time as shown in **Fig. 19**. A linear relationship was observed between MB dye concentration and irradiation time.

www.jchr.org





The Langmuir-Hinshelwood (L-H) kinetic expression, widely utilized in heterogeneous photocatalytic processes [54, 55], was modified to account for the solid-liquid reaction [56], aligning with the experimental results.

The rate of MB oxidation was determined by the adsorption of MB on  $Ag_2S$ -TiO<sub>2</sub> [57].



**Fig. 19** Kinetics of MB dye degradation for different initial concentration by UV light/Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts: pH =  $7.0\pm0.1$ , Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts = 2g/L,  $I_{UV} = 1.381 \times 10^{-6}$ Einstein L<sup>-1</sup> s<sup>-1</sup>, airflow rate = 8.1 mL s<sup>-1</sup>.

The impact of dye concentration on the rate of deterioration was described by the following equations (Eq. 13, 14).

$$r = K_{1}K_{2}C$$

$$1+K_{1}C$$
(13)
$$1 = 1 + 1$$

$$r K_{2}K_{1}C + k_{2}$$
(14)

Where 'C' represented the MB concentration at time 't',  $K_1$  was indicated as the adsorption constant, and  $K_2$  was

associated with the reaction characteristics of the substrate (MB). **Fig. 20** represented the linear plot attained by graphing the reciprocal of the initial rate (1/r) versus the reciprocal of the initial concentration of MB (1/C), indicating that the application of the L-H equation significantly aided in the dye deterioration.  $K_1$  and  $K_2$  were determined from the slope, intercept were 5.96 X 10<sup>3</sup> M<sup>-1</sup> and 1.84 X 10<sup>-5</sup> Mm<sup>-1</sup> respectively.

www.jchr.org

Located of Characteristics The second second

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727



Fig. 20 Linearized reciprocal kinetic plot of the degradation of MB by Ag<sub>2</sub>S-TiO<sub>2</sub> nanocatalysts

#### Chemical Oxygen Demand (COD) analysis

The COD results were used to confirm the MB dye mineralization and the decreased value of COD % was shown in **Table 3**. The results demonstrated a significant decrease in COD values in the solutions

obtained after photodegradation. This indicates that 86.4% of COD removal was obtained for MB dye deterioration within 40 minutes. It proves the mineralization of dye.

| Time (min) | COD<br>Values<br>(mg/L) | COD<br>removal (%) |  |
|------------|-------------------------|--------------------|--|
| 0          | 8780.8                  | 0                  |  |
| 20         | 5376                    | 38.8               |  |
| 40         | 1164.8                  | 86.4               |  |

#### Mechanism of deterioration

**Fig. 21** displayed the excitation, and charge transfer mechanism between  $Ag_2S$  and  $TiO_2$  nanocatalysts under visible light illumination. Electrons and holes were generated when  $Ag_2S$ -TiO\_2 nanocatalysts was revealed to UV-A light irradiation. Electrons moved from the Conduction Band of  $Ag_2S$  to the Conduction Band of  $TiO_2$ , whilst holes migrated from the Valence Band of  $TiO_2$  to the Valence Band of  $Ag_2S$ . This electron transfer process occurred at rapidly compared to electron-hole recombination. The resulting holes reacted with surface adsorbed water or hydroxyl ions, producing the strong oxidant hydroxyl radical ('OH). Conversely, electrons were scavenged by oxygen molecules, generating the highly reactive superoxide radical anion ( $O_2^-$ ). Ultimately, both radicals exhibited high reactivity, contributing to the deterioration of dye molecules.

 $Dye + O_2 \longrightarrow Mineral acids + CO_2 + H_2O$ 

$$Dye + OH \longrightarrow Mineral acids + CO_2 + H_2O$$

www.jchr.org

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727







#### Antibacterial studies

Antimicrobial activity was assessed using the well diffusion techniques. Gram-positive bacteria such as Staphylococcus aureus and Micrococcus lutes, along with Gram-negative bacteria like E. coli and Salmonella typhi, were included in the test. The control consisted of filter paper without any nanocatalysts, while the standard treatment involved Chloramphenicol administration. Test pathogens were cultured on Muller Hinton Agar plates for antibacterial evaluation. Wells were formed using a sterile cork borer, loaded with the appropriate doses of nanocatalysts (Ag<sub>2</sub>S, Ag<sub>2</sub>S-TiO<sub>2</sub>, TiO<sub>2</sub>), and then placed

upon the agar. The plates were incubated for 24 hours at 37°C. Activity against the test pathogens was assessed by measuring the diameter of the inhibition zone (mm). One well contained the standard (Chloramphenicol), while three other wells held various nanocatalysts (Ag<sub>2</sub>S, Ag<sub>2</sub>S-TiO<sub>2</sub>, TiO<sub>2</sub>). The results were tabulated in Table 4. Ag<sub>2</sub>S and TiO<sub>2</sub> alone exhibited inadequate activity against all tested bacterial strains. Conversely, the nanocatalysts demonstrated Ag<sub>2</sub>S-TiO<sub>2</sub> superior antibacterial activity compared to Ag<sub>2</sub>S and TiO<sub>2</sub> individually Table 4. Remarkably, Ag<sub>2</sub>S-TiO<sub>2</sub> exhibited enhanced activity against Micrococcus lutes compared to other microorganisms.

| Table 4 Antimicrobial | activity of $Ag_2S$ , | $Ag_2S-11O_2$ , $11O_2$ and | d Standard (Chloran | iphenicol) |
|-----------------------|-----------------------|-----------------------------|---------------------|------------|
|                       |                       |                             |                     |            |

|                        | Microorganisms        |                   | Zone of inhibition (mm) 50(µg/ml)  |                  |                               |  |  |
|------------------------|-----------------------|-------------------|------------------------------------|------------------|-------------------------------|--|--|
| S. No                  |                       | Ag <sub>2</sub> S | Ag <sub>2</sub> S-TiO <sub>2</sub> | TiO <sub>2</sub> | Standard<br>(Chloramphenicol) |  |  |
| Gram positive bacteria |                       |                   |                                    |                  |                               |  |  |
| 1                      | Staphylococcus aureus | 15                | 18                                 | 16               | 25                            |  |  |
| 2                      | Micrococcus lutes     | 17                | 19                                 | 14               | 24                            |  |  |
| Gram negative bacteria |                       |                   |                                    |                  |                               |  |  |
| 3                      | E.coli                | 15                | 17                                 | 13               | 24                            |  |  |
| 4                      | Salmonella typhi      | 16                | 18                                 | 15               | 22                            |  |  |

www.jchr.org

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727



### Conclusion

The precipitation-thermal decomposition process was utilized to synthesize  $Ag_2S$  loaded  $TiO_2$  nanocatalysts. The loading of  $Ag_2S$  on  $TiO_2$  was analysed using several analytical methods like XRD, FE-SEM, EDS, UV-DRS, PL, and XPS. The

visible light absorption of  $Ag_2S$ -TiO<sub>2</sub> nanocatalysts is more than pure TiO<sub>2</sub>. PL spectra indicated that the presence of the presence of  $Ag_2S$  loaded on TiO<sub>2</sub> suppresses the recombination of photogenerated electron-hole pairs. XPS analysis confirmed the existence of Ti, O, Ag, and S components. Essentially, the  $Ag_2S$ -TiO<sub>2</sub> nanocatalysts exhibited higher efficiency than bare TiO<sub>2</sub> under UV light illumination, making it more suitable for wastewater treatment.

#### Acknowledgement

Authors are thankful to Prof. Dr. M. Swaminathan, Emeritus professor (CSIR), Nanomaterial laboratory, Department of Chemistry, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu for his valuable suggestions and help.

### 4. References

- [1] Mohamed EF (2011) 'Removal of organic compounds from water by adsorption and photocatalytic oxidation', Doctoral dissertation, University of Toulouse.
- [2] Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44, 2577-2641.
- [3] Krishnan S, Rawindran H, Sinnathambi C, Lim J (2017) Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants. Materials Science and Engineering, 206(1) 12-86.
- [4] Gnanaprakasam A, Sivakumar V, Thirumarimurugan M (2016) A study on Cu and Ag doped ZnO nanoparticles for the ptocatalytic degradation of brilliant green dye: synthesis and characterization. Water Science and Technology, 74, 1426-1435.
- [5] Vora J, Chauhan S, Parmar K, Vasava S, Sharma S, Bhutadiya L (2009). Kinetic study of application of ZnO as a photocatalyst in heterogeneous medium. Journal of Chemistry, 6, 531-536.
- [6] Bamuza-pemu EE (2014) 'Photocatalytic degradation of phenolic compounds and algal

metabolites in water'. Doctoral dissertation, University of Pretoria.

- [7] Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts, 3, 189-218.
- [8] Sathishkumar P, Mangalaraja RV, Anandan S, Ashokkumar M (2013) CoFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> nanocatalysts for the photocatalytic degradation of Reactive Red 120 in aqueous solutions in the presence and absence of electron acceptors. Chemical engineering journal, 220, 302-310.
- [9] Cao Y, Yu Y, Zhang P, Zhang L, He T, Cao Y (2013) An enhanced visible-light photocatalytic activity of TiO<sub>2</sub> by nitrogen and nickel– chlorine modification. Separation and Purification Technology, 104, 256-262.
- [10] Wu M, Yang B, Lv, Y, Fu Z, Xu J, Guo T, Zhao Y (2010) Efficient one-pot synthesis of Ag nanoparticles loaded on N-doped multiphase TiO<sub>2</sub> hollow nanorod arrays with enhanced photocatalytic activity. Applied Surface Science, 256, 7125-7130.
- Barakat M, Al-hutailah R, [11] Qayyum E, Rashid J. Kuhn J 2014) Pt ( nanoparticles/TiO<sub>2</sub> for Photocatalytic degradation of phenols wastewater. in

www.jchr.org

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727

Environmental technology, 35, 137.

- [12] Tian B, Zhang J, Tong T, Chen F (2008) Preparation of Au/TiO<sub>2</sub> catalysts from Au(I)– thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange. Applied Catalysis B: Environmental, 79, 394-401.
- [13] Pouretedal HR, Eskandari H, Keshavarz MH, Semnani A (2009a) Photodegradation of Organic Dyes using Nanoparticles of Cadmium Sulfide Doped with Manganese, Nickel and Copper as Nanophotocatalyst. Acta Chimica Slovenica, 56.
- [14] Tian B, Li C, Gu F, Jiang H, Hu Y, Zhang J (2009) Flame sprayed V-doped TiO<sub>2</sub> nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chemical Engineering Journal, 151, 220-227.
- [15] Boxi SS, Paria S (2014) Effect of silver doping on TiO<sub>2</sub>, CdS, and ZnS nanoparticles for the photocatalytic degradation of metronidazole under visible light. RSC Advances, 4, 37752-
- [16] XU AW, GAO Y, LIU HQ (2002) The

preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO<sub>2</sub> nanoparticles. Journal of Catalysis, 207, 151-

- [17] Gnanaprakasam A, Sivakumar V, Thirumarimurugan M (2015) Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: a review. Indian Journal of Materials Science, 2015,1-16.
- [18] Chen T, Zheng Y, Lin JM, Chen G (2008) Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion- trap mass spectrometry. Journal of the American Society for Mass Spectrometry, 19, 997-1003.
- [19] Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles

embedded in titanium dioxide. Journal of the American Chemical Society, 130, 1676-1680, https://doi.org/10.1021/ja076503n.

- [20] Yu T, Tan X, Zhao L, Yin Y, Chen P, Wei J (2010) Characterization, activity and kinetics of a visible light driven photocatalyst: cerium and nitrogen co-doped TiO<sub>2</sub> nanoparticles. Chemical Engineering Journal, 157, 86-92.
- [21] umar PSS, Raj MR, Anandan S (2010) Nanoporous Au–TiMCM-41-An inorganic hybrid photocatalyst toward visible photooxidation of methyl orange. Solar Energy Materials and Solar Cells, 94, 1783-1789.
- [22] Bechambi O, Najjar W, Sayadi S (2016) The nonylphenol degradation under UV irradiation in the presence of Ag–ZnO nanorods: effect of parameters and degradation pathway. Journal of the Taiwan Institute of Chemical Engineers, 60, 496-501.
- [23] Kaviyarasu K, Manikandan E, Nuru ZY, Maaza M (2015) Investigation on the structural properties of CeO<sub>2</sub> nanofibers via CTAB surfactant. Materials Letters, **160**, 61-63.
- [24] Kaviyarasu K (2016) Photoluminescence of well-aligned ZnO doped CeO<sub>2</sub> nanoplatelets by a solvothermal route. Materials Letters, **183**, 351-354,
- [25] Maria Magdalane C, Kaviyarasu K, Judith Vijaya J, Siddhardha B, Jeyaraj B (2017) Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: Synergistic effect of antimicrobial studies. Journal of Photochemistry Photobiology and B: Biology 173, 23-34.
- [26] Kasinathan K, Kennedy J, Elayaperumal M, Henini M, Malik M (2016) Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO<sub>2</sub> nanomaterials for antibacterial applications. Scientific Reports 6, 38064.
- [27] Lee JC, Kim TG, Choi HJ, Sung YM (2008)

Enhanced Photochemical Response of TiO<sub>2</sub>/CdSe Heterostructured Nanowires Cryst.



www.jchr.org



JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727

Growth Des. 8750.

- [28] Banerjee S, Mohapatra SK, Das PP, Misra M
   (2008) Synthesis of Coupled Semiconductor by
   Filling 1D TiO<sub>2</sub> Nanotubes with CdS Chem.
   Mater. 20 6784.
- [29] Vogel R, Hoyer P, Weller H (1994) Application of heterogeneous photocatalysis in water contamination treatment J Phys Chem, 98: 3183
- [30] Kryukov AI, Kuehmii SYa, Pokhodenko VD (2000) Theor Exp Chem, **36**: 63.
- [31] Akamatsu K, Takei S, Mizuhata M, Kajinami A, Deki S, Takeoka S, Fujii M, Hayashi S, Yamamoto K (2000) Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles Thin Solid Films, 359: 55.
- [32] Hodes G, Manassen J, Cahen D (1976)
- [37] Xu Q, Wellia C, Sk DV, Lim MA, Loo KH, Liao JSC, Amal DW, Tan RY TT (2008) J.

Photochem Photobiol, A, 210, 187.

[38] Li G, Leung MKH (2010) Template-free synthesis of hierarchical porous SnO<sub>2</sub>

J. Sol-gel Sci. Technol 53, 499.

- [39] Krishnakumar B, Subash B, Swaminathan M (2012) AgBr–ZnO – An efficient nanophotocatalyst for the mineralization of Acid Black 1 with UV light Sep. Purif. Technol 85, 35, https://doi.org/10.1016/j.seppur.2011.09.037.
- [40] Chen C, Li Z, Lin H, Wang G, Liao J, Li M, Lv S, Li W (2016) Enhanced visible light photocatalytic performance of ZnO nanowires integrated with CdS and Ag<sub>2</sub>S Dalton Trans. 45, 3750, https://doi.org/10.1039/C5DT04533A.
- [41] Rajamanickam D, Shanthi M (2012) Photocatalytic degradation of an organic pollutant by zinc oxide-solar process, Arabian J. Chem, 9, 1858-1868, https://doi.org/10.1016/j.arabjc.2012.05.00 6.
- [42] Krishnakumar B, Selvam K, Velmurugan R, Swaminathan M (2010) Influence of

Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes Nature, 261: 403.

- [33] Kitova S, Eneva J, Panov A, Haefke H (1994) Infrared photography based on vapor-deposited silver sulfide thin films J Imaging Sci Technol, 38: 484.
- [34] Hull S, Keen DA, Sivia DS, Madden PA, Wilson M (2002) High Temperature Structural Study of Ag2S J Phys Condens Matter, 14: L9.
- [35] Minami T (1987) Recent progress in superionic conducting glasses J Non-Cryst Solids,95:107.
- Lei X, Xue X. & Yang H (2014) Preparation [36] and characterization of Ag-doped TiO<sub>2</sub> nanomaterials and their photocatalytic reduction of Cr (VI) under visible light. Applied Surface Science, 321, 396-403. operational parameters on photomineralization of Acid Black 1 with ZnO, Desalin. Water Treat. 24, 132-139, https://doi.org/10.5004/dwt.2010.1466.
- [43] Subash B, Krishnakumar B, Swaminathan M, Shanthi M (2013) Photocatalytic performance of WO<sub>3</sub> loaded Ag–ZnO for Acid Black 1 degradation by UV-A light, J. Mol. Catal. A: Chem. 366, 54–63.
- [44] Krishnakumar B, Swaminathan M (2012) Photodegradation of Acid Violet 7 with AgBr– ZnO under highly alkaline
- [45] conditions, Spectrochim Acta Part A 99, 160–165.
- [46] Subash B, Krishnakumar B, Velmurugan R, Swaminathan M, Shanthi M (2012) Synthesis of Ce co-doped Ag–ZnO photocatalyst with excellent performance for NBB dye degradation under natural sunlight illumination, Catal. Sci. Technol. 2,2319–2326, https://doi.org/10.1039/C2CY20254A.

[47] Subash B, Krishnakumar B, Swaminathan M, Shanthi M (2013) Highly efficient, solar active and reusable photocatalyst, Zr loaded Ag–ZnO for reactive red 120 dye

www.jchr.org

Journal of Chemical Harbib Riss Warman

JCHR (2024) 14(3), 1461-1481 | ISSN:2251-6727

degradation with synergistic effect and dye sensitized mechanism, Langmuir 29 939–949,

https://doi.org/10.1021/la303842c.

- [48] Kuzhalosai V, Subash B, Senthilraja A, Dhatshanamurthi P, Shanthi M
  (2013) Synthesis, Characterization and photocatalytic properties of SnO<sub>2</sub>–ZnO composite under UV-A light, Spectrochim Acta Part A 115, 876–882, https://doi.org/10.1016/j.saa.2013.06.10
  6.
- [49] Okamoto K, Yamamoto Y, Tanaka H, Itaya A (1985) Heterogeneous Photocatalytic Decomposition of Phenol over TiO<sub>2</sub> Powder Bull. Chem.Soc. Jpn, 58,
- [53] Tang WZ, An H (1995) Photocatalytic degradation kinetics and mechanism of acid blue 40 by TiO<sub>2</sub>/UV in aqueoussolution Chemosphere, 31, 4171.
- [54] Chem LC, Chou TC (1993) J. Mol. Catal, 85, 201.
- [55] Wenhua L, Hong L, Suoan C, Jianqing Z, Chunan (2000)

J. Photochem. Photobiol. A, 131, 125.

- [56] Alaton IA, Balcioglu IA (2001)Photochemical and heterogeneous photocatalytic degradation of waste vinvlsulphone dyes: a case study with hydrolyzed Reactive Black 5 J. Photochem. Photobiol. A, 14.
- [57] Sharma A, Rao P, Mathur RP, Ametha SC (1995) J. Photochem. Photobiol. A, 86, 197.

2015.

- [50] A, Plaidy O (1995), Assessment of the importance of the role of H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub><sup>-</sup>in the Photocatalytic degradation of 1,2-dimethoxybenzene Sol. Energy Mater. Sol. Cells, 38, 391.
- [51] Bekholet M, Lindner M, Weichgrebe D, Bahnemann DW (1996) Sol. Energy, 56, 455.
- [52] Pelizzetti E, Carlin V, Minero C, Gratzel M (1991) Enhancement of the rate of photocatalytic degradation on TiO<sub>2</sub> of 2chlorophenol, 2,7-dichlorodibenzodioxin and atrazine by inorganic oxidizing species New J. Chem, 15, 351.