www.jchr.org

JCHR (2024) 14(3), 879-898 | ISSN:2251-6727

A Paradigmatic Approach for Physico-Chemical Characterization of **COVID-19 Drugs via ST-Polynomial**

Lakhdar Ragoub¹, K. Pattabiraman², Mohammad Usman Ghani³, Mohammad Reza Farahani⁴, Mehdi Alaeiyan⁴, Murat Cancan⁵

¹ Mathematics Department, University of Prince Mugrin, P.O. Box 41040, 42241 Al Madinah, Saudia Arabia.

² Department of Mathematics Government Arts College (Autonomous) Kumbakonam 612 001, India.

³ Institute of Mathematics, Khawaja Fareed University of Engineering & Information Technology, Abu Dhabi Road, 64200, Rahim Yar Khan, Pakistan

⁴Department of Mathematics and Computer Science, In University of Science and Technology (IUST), Narmak, Tehran, 16844, Iran.

⁵Faculty of Education, Van Yuzuncu Yl University, Zeve Campus, 65080, Van, Turkey

(Received: 04 Fe	bruary 2024	Revised: 11 March 2024	Accepted: 08 April 2024)
KEYWORDS COVID-19, Quantitative Structure- Property Relationship (QSPR), ST- Polynomial, Topological indices of molecular graph COVID-19	ABSTRACT: One of the most in (COVID-19), is a s illness that has alrea- effective mediciness stop the virus's tran- long time, but scient been working nons- may be the best cou- efficient treatments information on drug based approach. Up therapeutic and vac- techniques for grap the creation of expa COVID-19 antivity topological descrip Quantitative Structu- chemical properties specified indices. Of drugs for the treatments	nfectious diseases in recorded h severe acute respiratory syndrom ady claimed millions of lives thro are currently available that can smission. The development of m tific communities all around the stop on them. Repurposing the urse of action in the face of this u s for SARS-CoV-2. Drug repu- gable targets, which might be us odated information is also required cine development, and results. The h partitioning issues, the investi- ander graphs are all applications al medications, we suggest st tors in this work. We also exam- ure-Property Relationship (QSPR s of the COVID-19 drugs are of Our models and results may fac- ent of COVID-19.	uman history, Coronavirus Disease-19 e coronavirus 2 (SARS-CoV-2)-related bughout the globe. Neither vaccines nor effectively treat COVID-19 patients or nedications and vaccinations may take a world have responded quickly and have already available antiviral medications incertainty to hasten the development of urposing may also provide important sed to develop new drugs using a target- ed on potential pharmacological targets, he design and analysis of approximation gation of random walks in graphs, and of spectral graph theory. For numerous tatus distance-based polynomials and nine the suggested topological indices' c). Curve fitting models for the physico- btained and looked at in line with the cilitate the development of innovative

1. Introduction

As of June 30, 2020, there were 10,421,869 confirmed cases of COVID-19 (Figure 1), which initially appeared in China. There were also 508,422 confirmed fatalities (worldometers.info/coronavirus/). COVID-19 and earlier epidemics like SARS and the Middle East Respiratory Syndrome (MERS), in addition to sharing comparable signs and symptoms like a sore throat, a persistent high fever, and pneumonia, also share similar pathologies including immune dysfunction and multiorgan failure (Andersen, Rambaut, Lipkin, Holmes, & Garry, 2020; Forster, Forster, Renfrew, & Forster,

www.jchr.org

JCHR (2024) 14(3), 879-898 | ISSN:2251-6727

2020). Like other coronaviruses, SARSCoV-2 has a variety of structural and non-structural proteins that are essential to cellular functions (Ashour, Elkhatib, Rahman, &Elshabrawy, 2020). Spike glycoproteins are among the structural proteins that help the virus adhere to its host cells. The non-structural proteins necessary for viral replication include the helicase, major protease

(Mpro), papain-like protease (PLpro), and RNA dependent RNA polymerase (RdRp) (Forster et al., 2020; Siu et al., 2008). These proteins provide intriguing pharmacological targets for creating possible therapeutics against SARS-CoV-2 infection because of their essential involvement in the viral life cycle.

Figure 1. The resulting infectious disease was referred to by the World Health Organization as Corona virus 2019 (COVID-19).

Although the scientific community has moved quickly, COVID-19 currently has no vaccine or viable treatments (Figure 2) (Harrison, 2020). Remdesivir is one of the antiviral medications now on the market that has been used to treat different viral infections. This treatment for COVID-19 patients has had conflicting results (Gautret et al., 2020; Molina et al., 2020). So, it is essential to concentrate on alternate, logical approaches for the creation of urgent treatments to stop the epidemic.

Understanding the sickness, the immune response after infection, and the pathophysiology of the virus is necessary for the development of novel treatment medications and vaccines. We thoroughly evaluate all pertinent published research on this topic in order to produce a scoping review that summarises the prospective pharmacological targets and treatments now undergoing trials in order to speed up this endeavour. This evaluation would offer verifiable proof of the drug targets, drug usage in the past and early indications of potential pharmacological mechanisms. Our assessment would also offer useful data for further SARS-CoV-2 research and might help researchers find a suitable treatment, see Figure 3.

Figure 2. Updates on treatment and vaccine for novel coronavirus (2019-nCOV).

Figure 3. Possible strategies for vaccine design and development.

The mathematical discipline known as chemical graph theory focuses on chemical graphs, which are pictures of chemical systems. Chemical graph theory is used in the development of topological indices for COVID-19 medicines. Topological Indices (TIs), which are generated from molecular graphs, are numerical descriptors used to characterise chemical systems. They are mostly used to investigate the physiochemical properties of different drugs. Chemical graph theory relies heavily on the intricate computation of a wide variety of polynomial types and topological indices, which show chemical structure. The importance of status distance-based topological indices in these classes, and chemistry in particular, cannot be overstated. In QSPR and QSAR research, graph invariants (TIs) have garnered a lot of attention in recent years. The most important applications of the topological indices to date are the non-empirical Quantitative Structure-Property Relationships (QSPR) Structure-Activity **Relationships** and Quantitative (QSAR) [4, 5, 6, 34-49].

Numerous fields, including biology, mathematics, bioinformatics, informatics, and others, have used topological indices in their research. The QSPR models establish how topological indices and psychochemical characteristics should be related. These psychochemical features are being studied because they have a substantial impact on drug transit and bioactivity in the human body. In this work, we compute the status distance-based TIs linked to the COVID-19 indicated drugs. Similar to this, COVID-19 medicines are an example of a chemical substance for which the specified topological indices are well defined and included in QSPR analysis. The equivalent characteristic determined in this manner has a significant connection with the characteristic of COVID-19 medicines using the curve fitting technique.

Material and Method

Let G=(V, E) be a molecular graph with the vertex set V=V(G) and the edge set E=E(G). A molecular graph is a straightforward finite graph where the edges represent chemical bonds and the vertices represent atoms [11] is a general source for the notation used in graph theory. The length of the shortest path (the number of edges in it) connecting the vertices u and v of the graph G is equal to the distance d(u,v) between them. Two vertices u and v are connected by an edge e=uv of the graph G (d(u,v)=1).The status [26] of a vertex v in G is the sum of the distance from v to all other vertices in G, that is

$$s_{v} = \mathop{a}_{u\hat{l}} V d(u, v)$$

In [27-32], status-distance based TIs are examined in terms of their mathematical properties and chemical applications. In the literature, a number of graph polynomials were introduced, and some of them proved to be beneficial in mathematical chemistry. Graph

www.jchr.org

JCHR (2024) 14(3), 879-898 | ISSN:2251-6727

polynomials are functions of isomorphism-invariant graphs. Usually, they are polynomials with integer coefficients in one or two variables. Because some subgraphs are virtually always counted, graph polynomials can be thought of as regular generating functions for the sequences of coefficients. In the field of distance-based topological indices, the Hosoya polynomial [12] is an important polynomial; see also [13-15]. With an evaluation of 1, the Hosoya polynomial's first derivative can be used to derive the Wiener index [33]. Domination polynomials, chromatic polynomials, independence polynomials, matching polynomials, Tutte polynomials, reliability polynomials, characteristic polynomials, subgraph polynomials, clique polynomials, forest polynomials, Padmakar-Ivan polynomials, and Omega polynomials are a few notable examples of graph polynomials. See [7-10, 16-25] for a definition of these polynomials.

In 2015, Klavzar and Deutsch published the Mpolynomial, a degree-based invariants polynomial [25]. They demonstrate that the functions for degree-based invariants and distance-based invariants of the Hosoya polynomial are equal.

In accordance with polynomials studied previously, we introduce new polynomial called ST-Polynomial (ST_P) with respect to status distance of a graph G which is defined as

$$\begin{split} ST(G, x, y) &= \mathop{a}\limits_{i \pounds j} d_{ij} x^{i} y^{j}, \qquad \text{where} \\ d_{ij} &= \Big\{ | \mathop{E}\limits_{ij} | \Big| \Big\{ s_{u} = i, s_{v} = j \Big\} \Big\}. \end{split}$$

TIs based on the vertex status distance is defined as

$$STI(G) = \mathop{a}_{uv\hat{1} E} h(s_u, s_v) - \cdots$$

---(1)

The following operators are used in Table 1

$$s_{x} = x \underbrace{\mathfrak{g}}_{t}^{\mathfrak{g}} \underbrace{\frac{\left(h(x,y)\overset{\circ}{t}\right)}{\P x}}_{\P x}^{\frac{\circ}{t}}},$$

$$s_{y} = y \underbrace{\mathfrak{g}}_{t}^{\mathfrak{g}} \underbrace{\frac{\left(h(x,y)\overset{\circ}{t}\right)}{\P y}}_{\frac{1}{2}},$$

$$E_{x} = \overset{x}{\mathbf{o}} \underbrace{\frac{h(t,y)}{\P y}}_{0}^{\frac{1}{2}} dt,$$

$$E_{y} = \overset{y}{\mathbf{o}} \underbrace{\frac{h(t,y)}{t}}_{0} dt,$$

$$c_{k}(h(x,y)) = x^{k}h(x,y)$$
and $J(h(x,y)) = h(x,x).$ If $m_{u} = s_{u}$ and
 $m = s_{u}$ then we have $h(x,y) = ST(G,x,y).$

Topological indices	Mathematical Expressions (m_u, m_v)	Derivation from $ST(G, x, y)$
First status connectivity index \mathbf{S}_1 [28,30]	$ \overset{\circ}{\underset{uvl}{a}}_{E} (m_{u} + m_{v}) $	$\left((s_x + s_y)h(x, y)\right)(1, 1)$
Second status connectivity \mathbf{S}_2 [28,30]	${\mathop{a}\limits_{uv\hat{1}}}{\mathop{m_u}\limits_{E}}{\mathop{m_u}\limits_{v}}{\mathop{m_v}\limits_{v}}$	$((s_x s_y)h(x, y))(1, 1)$
Inverse second status connectivity index \mathbf{S}_3	$\overset{\bullet}{\underset{uv^{\hat{l}} \in E}{a}} \frac{1}{m_u m_v}$	$((E_x E_y)h(x,y))(1,1)$
Forgotten status index FS	$ \overset{\circ}{\underset{uv\hat{l} E}{a}} \left(m_{u}^{2} + m_{v}^{2} \right) $	$((s_x^2 + s_y^2)h(x, y))(1, 1)$
Reformulated status index RS	$ \overset{\circ}{\underset{uv1}{a}} m_{u}m_{v}(m_{u}+m_{v}) $	$((s_x s_y (s_x + s_y))h(x, y))(1, 1)$

Table 1. Topological indices and their mathematical formulations.

www.jchr.org

JCHR (2024) 14(3), 879-898 | ISSN:2251-6727

Symmetric deg division status index SDDS	$\mathring{a}_{uv\hat{i}} \overset{\mathfrak{E}}{\underset{E}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}}} \overset{m_{u}}{\underset{w_{v}}{\overset{+}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}}} + \frac{m_{v} \overset{\ddot{\underline{o}}}{\overset{\underline{\cdot}}{\overset{+}{\overset{\bullet}{\overset{\bullet}}}}}{m_{u}}$	$\left(\left(s_{x}E_{y}+E_{x}s_{y}\right)h(x,y)\right)(1,1)$
Inverse sum indeg status index ISSI	$ \overset{a}{\underset{uv\hat{l}}{a}} \overset{a}{\underset{E}{\overset{e}{\underbrace{e}}}} \overset{m_{u}m_{v}}{\underset{m_{u}}{\overset{m_{v}}{\underbrace{e}}}} \overset{\ddot{o}_{i}}{\underset{m_{u}}{\overset{i}{\underbrace{e}}}} $	$\left(\left(\mathbf{E}_{x}\mathbf{J}\mathbf{s}_{x}\mathbf{s}_{y}\right)\mathbf{h}(x,y)\right)(1)$
Harmonic Status index HS [29]	$ \overset{\circ}{\underset{uv^{\hat{l}} \in \mathbf{E}}{a}} \overset{\varepsilon}{\underset{E}{\underbrace{v^{\hat{l}}}}} \frac{2}{\underbrace{v^{\hat{l}}}} \frac{\overset{\ddot{v}}{\underbrace{v^{\hat{l}}}}}{\underbrace{v^{\hat{l}}}{\underbrace{v^{\hat{l}}}}} $	$((2E_xJ)h(x,y))(1)$
Augmented status index AS	$ \hat{\mathbf{a}}_{uv\hat{l}} \underbrace{\overset{\mathbf{a}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}}}_{\mathbf{b}} \underbrace{\overset{\mathbf{m}}{\overset{\mathbf{m}}{\overset{\mathbf{c}}}}_{\mathbf{b}} \underbrace{\overset{\mathbf{m}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}}}}_{\mathbf{b}}}_{\mathbf{b}} \underbrace{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}}}}}_{\mathbf{b}}}_{\mathbf{b}} $	$((E_x^3 c_{-2} J s_x^3 s_y^3)h(x, y))(1)$

3.STp for Covid drugs

In this section, we find the ST-polynomials for six antiviral drugs used in the treatment of COVID-19 such as lopinavir-d8 (CID71749833) which is ritonavir analog, CID89869520 structure which is favipiravir analog, CID10009410, CID44271905, CID3010243 and CID271958 structures which are structural analog of lopinavir. These structures have the property of being

potential drugs against COVID-19. Using these polynomials, various TIs depending on the status distance are calculated for these drugs.

Theorem 3.1.1. Let G_1 be the chemical graph of CID71749833 structure. Then

$$\begin{split} ST(G_1, x, y) &= x^{281}y^{292} + x^{281}y^{320} + x^{281}y^{286} + x^{286}y^{293} + x^{292}y^{305} + x^{293}y^{344} + x^{293}y^{304} + x^{304}y^{343} \\ &+ x^{304}y^{331} + x^{305}y^{322} + x^{305}y^{356} + x^{320}y^{361} + x^{322}y^{357} + x^{322}y^{361} + x^{322}y^{373} + x^{331}y^{360} \\ &+ x^{343}y^{384} + 2x^{357}y^{402} + x^{360}y^{411} + x^{360}y^{393} + 3x^{361}y^{408} + x^{361}y^{406} + 2x^{384}y^{431} \\ &+ x^{393}y^{428} + 6x^{402}y^{453} + x^{406}y^{453} + x^{406}y^{457} + 3x^{408}y^{455} + x^{428}y^{465} + 2x^{431}y^{478} \\ &+ x^{453}y^{500} + x^{455}y^{500} + 2x^{455}y^{502} + 2x^{465}y^{510} + 2x^{478}y^{525} + x^{510}y^{561} + 2x^{510}y^{557} \\ &+ x^{557}y^{602}. \end{split}$$

Proof. From Figure1, it is easy to see that |V| = 53, |E| = 56 and also

$$\begin{split} & \left| \mathbf{E}_{281,292} \right| = 1, \left| \mathbf{E}_{281,320} \right| = 1, \\ & \left| \mathbf{E}_{281,286} \right| = 1, \left| \mathbf{E}_{286,293} \right| = 1, \left| \mathbf{E}_{292,305} \right| = 1, \\ & \left| \mathbf{E}_{293,344} \right| = 1, \left| \mathbf{E}_{293,304} \right| = 1, \\ & \left| \mathbf{E}_{304,343} \right| = 1, \left| \mathbf{E}_{304,331} \right| = 1, \end{split}$$

$$\begin{aligned} \left| \mathbf{E}_{305,322} \right| &= 1, \left| \mathbf{E}_{305,356} \right| &= 1, \left| \mathbf{E}_{320,361} \right| &= 1, \left| \mathbf{E}_{322,357} \right| &= 1 \\ , \left| \mathbf{E}_{322,361} \right| &= 1, \left| \mathbf{E}_{322,373} \right| &= 1, \left| \mathbf{E}_{331,360} \right| &= 1, \\ \left| \mathbf{E}_{343,384} \right| &= 1, \left| \mathbf{E}_{357,402} \right| &= 2, \left| \mathbf{E}_{360,411} \right| &= 1, \left| \mathbf{E}_{360,393} \right| &= 1 \\ , \left| \mathbf{E}_{361,408} \right| &= 3, \left| \mathbf{E}_{361,406} \right| &= 1, \left| \mathbf{E}_{384,431} \right| &= 2, \\ \left| \mathbf{E}_{393,428} \right| &= 1, \left| \mathbf{E}_{402,453} \right| &= 6, \left| \mathbf{E}_{406,453} \right| &= 1, \left| \mathbf{E}_{406,457} \right| &= 1 \\ , \left| \mathbf{E}_{408,455} \right| &= 3, \left| \mathbf{E}_{428,465} \right| &= 1, \left| \mathbf{E}_{431,478} \right| &= 2, \\ \left| \mathbf{E}_{453,500} \right| &= 1, \left| \mathbf{E}_{455,500} \right| &= 1, \left| \mathbf{E}_{455,502} \right| &= 2, \left| \mathbf{E}_{465,510} \right| &= 2 \\ \left| \mathbf{E}_{478,525} \right| &= 2, \left| \mathbf{E}_{510,561} \right| &= 1, \left| \mathbf{E}_{510,557} \right| &= 2, \\ \left| \mathbf{E}_{510,561} \right| &= 1, \left| \mathbf{E}_{557,602} \right| &= 2. \end{aligned}$$
From the Equation (1), it is obtained

www.jchr.org

JCHR (2024) 14(3), 879-898 | ISSN:2251-6727

 $ST(G_1, x, y) = \mathop{a}\limits_{28\,\text{lf }292} d_{281,292} x^{281} y^{292} + \mathop{a}\limits_{28\,\text{lf }320} d_{281,320} x^{281} y^{320}$ $+ \mathop{a}\limits_{_{322\pounds}} {_{373}} d_{_{322,373}} x^{_{322}} y^{_{373}} + \mathop{a}\limits_{_{331\pounds}} {_{360}} d_{_{331,360}} x^{_{331}} y^{_{360}}$ + $\overset{\circ}{a}_{2816} \overset{\circ}{b}_{286} \overset{\circ}{a}_{281,286} \overset{\circ}{x}^{281} y^{286} + \overset{\circ}{a}_{2866} \overset{\circ}{b}_{293} \overset{\circ}{d}_{286,293} \overset{\circ}{x}^{286} y^{293}$ $+ \overset{\circ}{\underset{343 \pounds 384}{a}} d_{343,384} x^{343} y^{384} + \overset{\circ}{\underset{357 \pounds 402}{a}} d_{357,402} x^{357} y^{402}$ $+ \overset{\circ}{\underset{292\pounds}{a}} \overset{\circ}{_{305}} \overset{\circ}{_{305}} x^{\frac{292}{2}} y^{\frac{305}{3}} + \overset{\circ}{\underset{293\pounds}{a}} \overset{\circ}{_{344}} \overset{\circ}{_{293,344}} x^{\frac{293}{2}} y^{\frac{344}{3}}$ $+ \ \, \mathring{a} \quad \, d_{_{360,411}}x^{_{360}}y^{_{411}} + \ \, \mathring{a} \quad \, d_{_{360,393}}x^{_{360}}y^{_{393}}$ 360£ 393 360£ 411 + $\mathbf{\mathring{a}}$ $d_{453,500}x^{453}y^{500}$ + $\mathbf{\mathring{a}}$ $d_{455,500}x^{455}y^{500}$ $+ \mathop{a}\limits_{_{361\pounds\,408}} d_{_{361,408}} x^{_{361}} y^{^{408}} + \mathop{a}\limits_{_{361\pounds\,406}} d_{_{361,406}} x^{_{361}} y^{^{406}}$ 453£ 500 455£ 500 + \mathbf{a} $d_{455,502}x^{455}y^{502}$ + \mathbf{a} $d_{465,510}x^{465}y^{510}$ $d_{384,431}x^{384}y^{431} + \overset{\circ}{\underset{393\pounds}{a_{28}}} d_{393,428}x^{393}y^{428}$ + å 465£ 510 455£ 502 384£ 431 $+ \overset{\circ}{\underset{478\pounds}{a}} \underbrace{d_{478,525}}_{478,525} x^{478} y^{525} + \overset{\circ}{\underset{510\pounds}{a}} \underbrace{d_{510,561}}_{561} x^{510} y^{561}$ + \mathbf{a} $\mathbf{d}_{402,453} \mathbf{x}^{402} \mathbf{y}^{453}$ + \mathbf{a} $\mathbf{d}_{406,453} \mathbf{x}^{406} \mathbf{y}^{453}$ 406£ 453 + $\overset{a}{a}_{510,561} d_{510,561} x^{510} y^{557}$ + $\overset{a}{a}_{557\pounds 602} d_{577} d_{57$ 402£ 453 $d_{557,602}x^{557}y^{602}$ $+ \mathop{a}\limits_{406\pounds\,457} d_{406,457} x^{406} y^{457} + \mathop{a}\limits_{408\pounds\,455} d_{408,455} x^{408} y^{455}$ $+ \overset{\circ}{\underset{293\pounds}{a}} \overset{d}{\underset{304}{d}} \overset{d}{\underset{304}{a}} x^{293} y^{304} + \overset{\circ}{\underset{304\pounds}{a}} \overset{d}{\underset{343}{d}} \overset{d}{\underset{304,343}{a}} x^{304} y^{343}$ $+ \mathop{a}\limits_{428\pounds} \mathop{d}\limits_{465} d_{_{428,465}} x^{_{428}} y^{_{465}} + \mathop{a}\limits_{431\pounds} \mathop{a}\limits_{478} d_{_{431,478}} x^{_{431}} y^{_{478}}$ + $\overset{\circ}{a}_{304\pounds 331} d_{304,331} x^{304} y^{331}$ + $\overset{\circ}{a}_{305\pounds 322} d_{305,322} x^{305} y^{322}$ $+ \mathop{a}\limits_{_{305\pounds}} {_{356}} d_{_{305,356}} x^{_{305}} y^{_{356}} + \mathop{a}\limits_{_{320\pounds}} {_{361}} d_{_{320,361}} x^{_{320}} y^{_{361}}$ 320£ 361 305£ 356 + $\overset{\circ}{a}_{322,357} d_{322,357} x^{322} y^{357}$ + $\overset{\circ}{a}_{322,361} x^{322} y^{361}$ 322£ 361 322£ 357 $ST(G_1, x, y) = x^{281}y^{292} + x^{281}y^{320} + x^{281}y^{286} + x^{286}y^{293} + x^{292}y^{305} + x^{293}y^{344} + x^{293}y^{304} + x^{304}y^{343} + x^{304}y^{344} + x^{304}y^{34} + x^{304}y^{34} + x^{304}y^{34} + x^{304}y^{34} + x^{304}y^$ $+ x^{304}y^{331} + x^{305}y^{322} + x^{305}y^{356} + x^{320}y^{361} + x^{322}y^{357} + x^{322}y^{361} + x^{322}y^{373} + x^{331}y^{360}$ $+ x^{343}y^{384} + 2x^{357}y^{402} + x^{360}y^{411} + x^{360}y^{393} + 3x^{361}y^{408} + x^{361}y^{406} + 2x^{384}y^{431}$ $+ x^{393}y^{428} + 6x^{402}y^{453} + x^{406}y^{453} + x^{406}y^{457} + 3x^{408}y^{455} + x^{428}y^{465} + 2x^{431}y^{478}$ $+ x^{453}y^{500} + x^{455}y^{500} + 2x^{455}y^{502} + 2x^{465}y^{510} + 2x^{478}y^{525} + x^{510}y^{561} + 2x^{510}y^{557}$ $+ x^{557}y^{602}$.

The 3D chemical structure and 3D plot of the $ST_{\rm P}$ of CID71749833 structure are displayed Figure 4.

Figure 4. The chemical structure and the Plot of ST_{p} of CID71749833 structure.

www.jchr.org

 $AS(G_1) = 534864898.3$ **Theorem 3.1.2.** The G_1 graph's various TIs are as follows: $RS(G_1) = 8544281706$ $S_1(G_1) = 45968$ $SDDS(G_1) = 112.6173684$ Proof. The following equations are derived from $S_2(G_1) = 9736630.$ ISSI(G₁) = 11460.63794 Theorem 3.1.1; $S_3(G_1) = 0.000370867$ $HS(G_1) = 0.141375317 FS(G_1) = 19578212$ $s_{x}(ST(G_{1}, x, y)) = 281x^{281}y^{292} + 281x^{281}y^{320} + 281x^{281}y^{286} + 286x^{286}y^{293} + 292x^{292}y^{305}$ $+ 293x^{293}y^{344} + 293x^{293}y^{304} + 304x^{304}y^{343} + 304x^{304}y^{331} + 305x^{305}y^{322}$ $+ 305x^{305}y^{356} + 320x^{320}y^{361} + 322x^{322}y^{357} + 322x^{322}y^{361} + 322x^{322}y^{373}$ $+ 331x^{331}y^{360} + 343x^{343}y^{384} + 714x^{357}y^{402} + 360x^{360}y^{411} + 360x^{360}y^{393}$ $+ 1083x^{361}y^{408} + 361x^{361}y^{406} + 768x^{384}y^{431} + 393x^{393}y^{428} + 2412x^{402}y^{453}$ $+ 406x^{406}y^{453} + 406x^{406}y^{457} + 1224x^{408}y^{455} + 428x^{428}y^{465} + 862x^{431}y^{478}$ $+ 453x^{453}y^{500} + 455x^{455}y^{500} + 910x^{455}y^{502} + 930x^{465}y^{510} + 956x^{478}y^{525}$ $+ 1020x^{510}y^{561} + 1020x^{510}y^{557} + 1114x^{557}y^{602}.$ $s_{y}(ST(G_{1}, x, y)) = 292x^{281}y^{292} + 320x^{281}y^{320} + 286x^{281}y^{286} + 293x^{286}y^{293} + 305x^{292}y^{305}$ $+ 344x^{293}y^{344} + 304x^{293}y^{304} + 343x^{304}y^{343} + 331x^{304}y^{331} + 322x^{305}y^{322}$ $+ \ 356x^{305}y^{356} + \ 361x^{320}y^{361} + \ 357x^{322}y^{357} + \ 361x^{322}y^{361} + \ 373x^{322}y^{373}$ $+ \ 360 x^{331} y^{360} + \ 384 x^{343} y^{384} + \ 804 x^{357} y^{402} + \ 411 x^{360} y^{411} + \ 393 x^{360} y^{393}$ $+ 1224 x^{361} y^{408} + 406 x^{361} y^{406} + 862 x^{384} y^{431} + 428 x^{393} y^{428} + 2718 x^{402} y^{453}$ $+ 453x^{406}y^{453} + 457x^{406}y^{457} + 1365x^{408}y^{455} + 465x^{428}y^{465} + 956x^{431}y^{478}$ $+ 500x^{453}y^{500} + 500x^{455}y^{500} + 1004x^{455}y^{502} + 1020x^{465}y^{510} + 1050x^{478}y^{525}$ $+ 1122x^{510}y^{561} + 1114x^{510}y^{557} + 1204x^{557}y^{602}.$ $s_{x}s_{y}(ST(G_{1}, x, y)) = 82052x^{281}y^{292} + 89920x^{281}y^{320} + 80366x^{281}y^{286} + 83798x^{286}y^{293}$ $+ 89060x^{292}y^{305} + 100792x^{293}y^{344} + 89072x^{293}y^{304} + 104272x^{304}y^{343}$ $+ \ 100624 \, x^{304} y^{331} + \ 98210 x^{305} y^{322} + \ 108580 x^{305} y^{356} + \ 115520 x^{320} y^{361}$ $+ 114954x^{322}y^{357} + 116242x^{322}y^{361} + 120106x^{322}y^{373} + 119160x^{331}y^{360}$ $+ 131712x^{343}y^{384} + 287028x^{357}y^{402} + 147960x^{360}y^{411} + 141480x^{360}y^{393}$ $+ \ 441864 x^{361} y^{408} + 146566 x^{361} y^{406} + \ 331008 x^{384} y^{431} + 168204 x^{393} y^{428}$ $+ \ 1092636 x^{402} y^{453} + 183918 x^{406} y^{453} + 185542 x^{406} y^{457} + \ 556920 x^{408} y^{455}$ $+ 199020x^{428}v^{465} + 412036x^{431}v^{478} + 226500x^{453}v^{500} + 227500x^{455}v^{500}$ $+ 456820x^{455}v^{502} + 474300x^{465}v^{510} + 501900x^{478}v^{525} + 572220x^{510}v^{561}$ + $568140x^{510}y^{557}$ + $670628x^{557}y^{602}$.

www.jchr.org

	$x^{281}v^{292}$	$x^{281}v^{320}$	$x^{281}v^{286}$	$x^{286}v^{293}$	$x^{292}v^{305}$	$x^{293}v^{344}$	$x^{293}v^{304}$	$x^{304}v^{343}$
$\mathbf{E}_{\mathbf{x}}\mathbf{E}_{\mathbf{y}}(\mathbf{G}_{1},\mathbf{x},\mathbf{y}) =$	$=\frac{11}{82052}+$	89920	$+\frac{n}{80366}$	$+\frac{3}{83798}$	$+\frac{n}{89060}$	$+\frac{1}{100792}$	$+\frac{n}{89072}$	$+\frac{10}{104272}$
	$x^{304}y^{331}$	$x^{305}y^{322}$	$x^{305}y^{356}$	$x^{320}y^{361}$	$x^{322}y^{357}$	$x^{322}y^{361}$	$x^{322}y^{373}$	$x^{331}y^{360}$
	$+\frac{1}{100624}$	$+\frac{1}{98210}+$	$\frac{108580}{108580}$ +	$\frac{1}{115520}$ +	$\frac{1}{114954}$ +	$\frac{1}{116242}$ +	$\frac{1}{120106}$ +	119160
	x ³⁴³ y ³⁸⁴	x ³⁵⁷ y ⁴⁰²	$x^{360}y^{411}$	x ³⁶⁰ y ³⁹³	x ³⁶¹ y ⁴⁰⁸	$x^{361}y^{406}$	$x^{384}y^{431}$	$x^{393}y^{428}$
	$+\frac{1}{131712}$	++	147960	$+$ $\frac{1}{141480}$	49096	146566	82752	168204
	$x^{402}y^{453}$	x ⁴⁰⁶ y ⁴⁵³	$x^{406}y^{457}$	x ⁴⁰⁸ y ⁴⁵⁵	$x^{428}y^{465}$	$x^{431}y^{478}$	$x^{453}y^{500}$	x ⁴⁵⁵ y ⁵⁰⁰
	30351	183918	185542	61880	199020	103009	226500	227500
	$+ \frac{x^{455}y^{502}}{x^{502}}$	$+ \frac{x^{465}y^{510}}{+}$	$\frac{x^{478}y^{525}}{4}$	$\frac{x^{510}y^{561}}{x^{510}y^{561}}$	$\frac{x^{510}y^{557}}{4}$	$\frac{x^{557}y^{602}}{x^{557}y^{602}}$		
	114205	118575	125475	143055	142035	167657		
$s_{x}^{2}(ST(G_{1},x,y)) =$	$= 78961x^{281}$	$y^{292} + 7896$	$1x^{281}y^{320} +$	78961x ²⁸¹	$y^{286} + 8179$	$96x^{286}y^{293} +$	+ $85264x^{29}$	² y ³⁰⁵
+	$+ 85849 x^{293}$	$y^{344} + 85849$	$9x^{293}y^{304} +$	92416x ³⁰⁴	$y^{343} + 9241$	$16 \mathrm{x}^{304} \mathrm{y}^{331}$ -	+ $93025x^{30}$	y^{322}
+	$+ 93025 x^{305}$	$y^{356} + 10240$	$00x^{320}y^{361}$ -	+ 103684x ²	$^{322}y^{357} + 10$	$3684x^{322}y^{322}$	$^{361} + 10368$	$4x^{322}y^{373}$
+	- 109561x ³³	$^{1}y^{360} + 1176$	$49x^{343}y^{384}$	+ 2548982	$x^{357}y^{402} + 1$	29600x ³⁶⁰ y	$y^{411} + 1296$	$00x^{360}y^{393}$
+	- 390963x ³⁶	$^{1}y^{408} + 1303$	$321x^{361}y^{406}$	+ 2949122	$x^{384}y^{431} + 1$	54449x ³⁹³	$y^{428} + 9696$	$24x^{402}y^{453}$
+	- 164836x ⁴⁰	$^{6}y^{453} + 1648$	836x ⁴⁰⁶ y ⁴⁵⁷	+ 499392	$x^{408}y^{455} + 1$	83184x ⁴²⁸	$y^{465} + 371$	$522x^{431}y^{478}$
+	$+ 205209 x^{45}$	$5^{53}y^{500} + 207$	$025x^{455}y^{50}$	$^{0} + 414050$	$x^{455}y^{502} + $	432450x ⁴⁶	$5^{5}y^{510} + 456$	968x ⁴⁷⁸ y ⁵²⁵
+	$+ 520200 x^{51}$	$^{0}y^{561} + 5202$	$200x^{510}y^{557}$	+ 620498	$x^{557}y^{602}$.			
$s_{y}^{2}(ST(G_{1}, x, y)) =$	$= 85264 x^{281}$	$y^{292} + 10240$	$00x^{281}y^{320}$	+ 81796x ²⁸	$^{31}y^{286} + 858$	349 x ²⁸⁶ y ²⁹³	+ 93025 x	$^{292}y^{305}$
+	- 118336x ²⁹	$^{3}y^{344} + 9241$	$6x^{293}y^{304}$ -	+ 117649x ³	$^{304}y^{343} + 10$	$9561 \mathrm{x}^{304} \mathrm{y}^{3}$	³³¹ + 10368	$4 x^{305} y^{322}$
+	- 126736x ³⁰	$5^{5}y^{356} + 1303$	$321x^{320}y^{361}$	+ 127449x	$x^{322}y^{357} + 13$	30321x ³²² y	$y^{361} + 13912$	$29x^{322}y^{373}$
+	- 129600x ³³	$^{1}y^{360} + 1474$	$56x^{343}y^{384}$	+ 3232082	$x^{357}y^{402} + 1$	68921x ³⁶⁰ y	v ⁴¹¹ + 1544	$49x^{360}y^{393}$
+	- 499392x ³⁶	$y^{408} + 1648$	$336x^{361}y^{406}$	+ 371522	$x^{384}y^{431} + 1$	83184x ³⁹³	$y^{428} + 1231$	$254 x^{402} y^{453}$
+	- 205209x ⁴⁰	$y^{453} + 208$	$849 x^{406} y^{45}$	7 + 621075	$x^{408}y^{455} +$	$216225 x^{42}$	$^{8}y^{465} + 456$	$968x^{431}y^{478}$
+	- 250000x ⁴⁵	$^{3}v^{500} + 2500$	$000 x^{455} v^{500}$	$^{0} + 504008$	$x^{455}y^{502} + 3$	520200 x ⁴⁶⁵	$5^{5}v^{510} + 551$	$250 \mathrm{x}^{478} \mathrm{y}^{525}$
+	$-629442x^{51}$	$^{0}y^{561} + 6204$	498x ⁵¹⁰ y ⁵⁵⁷	+ 724808	$x^{557}y^{602}$.		2	2
$s_x s_y (s_x + s_y)$	$(S_v)(ST(G_1, x))$	(x, y) = 470	15796x ²⁸¹ y	$v^{292} + 5404$	1920x ²⁸¹ y ²	320 + 45567	$7522x^{281}y^{28}$	36
2	5	+ 485	$19042x^{286}$	$y^{293} + 5316$	58820x ²⁹² y	305 + 6420	$4504 \mathrm{x}^{293} \mathrm{y}^{3}$	44
		+ 531	75984x ²⁹³	$y^{304} + 6746$	53984x ³⁰⁴ y	³⁴³ + 63890	$6240x^{304}y^3$	31
		+ 615	$77670x^{305}$	$y^{322} + 7177$	71380x ³⁰⁵ y	³⁵⁶ + 78669	$9120 x^{320} y^3$	61
		+ 780	53766x ³²²	$y^{357} + 7939$	93286x ³²² y	³⁶¹ + 83473	$3670x^{322}y^3$	73
		+ 823	39560x ³³¹	$y^{360} + 9575$	$4624x^{343}y^{$	$^{384} + 21785$	54252x ³⁵⁷ y	402
		+ 114	$077160 x^{36}$	$v^{0}y^{411} + 106$	534440x ³⁶	$^{0}y^{393} + 339$	793416x ³⁶	y^{408}
		+ 112	$416122x^{36}$	$^{1}y^{406} + 269$	9771520x ³⁸	$^{44}y^{431} + 138$	8095484x ³⁹	$y^{3}y^{428}$
		+ 934	203780x ⁴⁰	$y^{453} + 157$	985562x ⁴⁰	$y^{453} + 160$)122746x ⁴⁰	⁰⁶ y ⁴⁵⁷
		+ 480	621960x ⁴⁰	$v^{8}v^{455} + 177$	724860x ⁴²	$v^{28}v^{465} + 374$	$4540724x^4$	31 v ⁴⁷⁸
		+ 215	854500x ⁴⁵	$5^{3}y^{500} + 217$	7262500x ⁴	$55^{50}y^{500} + 43^{10}$	7176740x ²	⁵⁵ y ⁵⁰²
		+ 462	442500x ⁴⁶	$55^{50}y^{510} + 503$	3405700 x ^{4'}	$^{78}y^{525} + 612$	2847620x ⁵	¹⁰ y ⁵⁶¹
		+ 606	205380x ⁵¹	$^{.0}y^{557} + 777$	7257852x ⁵⁵	5^{57} y ⁶⁰² .		2

www.jchr.org

	164225x ²	²⁸¹ y ²⁹²	181361	$1 x^{281} y^{320}$	1607:	$57 x^{281} y^{286}$	167645x	x ²⁸⁶ y ²⁹³
$(S_x E_y + E_x S_y)(SI(G_1, X, Y))$	$()) = \frac{1}{8205}$	2	89	9920	8	0366	8379	.
	$178289x^{2}$	$y^{92}y^{305}$	204185	$5x^{293}y^{344}$	1782	$65 x^{293} y^{304}$	2100652	$x^{304}y^{343}$
	+	+)	100	792	+	9072 +	1042	272
	$201977 \mathrm{x}^3$	y^{331}	196709	$x^{305}y^{322}$	2197	$61x^{305}y^{356}$	232721x	$x^{320}y^{361}$
	+	4		$\frac{1}{210}$ +	1(08580	1155	20
	$4717 x^{322}$	y ³⁵⁷	234005 x	$x^{322}y^{361}$	24281	$3x^{322}y^{373}$	239161x ³	$^{331}y^{360}$
	+2346	<u> </u>	1162	42 +	120)106 +	11916	50
	$265105x^{3}$	⁴³ y ³⁸⁴	321172	$x^{357}y^{402}$	33169	$x^{360}y^{411}$	31561x ³⁶⁰	y ³⁹³
	+	2 +	797	3+	16	440 + -	15720	<u> </u>
	296785x ³	$^{61}y^{408}$	29515	$7 x^{361} y^{406}$	333	$217 \mathrm{x}^{384} \mathrm{y}^{431}$	33763	$3x^{393}y^{428}$
	+		140	6566	+	2752	-+	8204
	122271x ⁴	$^{402}y^{453}$	37004	$5x^{406}y^{453}$	373	$685x^{406}y^{457}$	37348	89 x ⁴⁰⁸ y ⁴⁵⁵
	+		+	3918	+	185542	-+	880
	399409x ⁴	²⁸ y ⁴⁶⁵	414245	$5x^{431}y^{478}$	4552	$09x^{453}y^{500}$	18281x	$^{455}y^{500}$
	+	0 +	103	009	+2	26500	+	00
	459029x ⁴	¹⁵⁵ y ⁵⁰²	2117 x	⁴⁶⁵ y ⁵¹⁰	50410	$9x^{478}y^{525}$	221x ⁵¹⁰ y	561
	+	15	52		125	5475 +	55	
	570349x ⁵	¹⁰ y ⁵⁵⁷	672653	$3x^{557}y^{602}$				
	+14203	5	167					
	82052x ⁵⁷³	8992	$0 x^{601}$	80366 x ⁵	⁶⁷ 8.	3798 x ⁵⁷⁹	89060 x ⁵	97
$(\mathbf{E}_{\mathbf{x}}\mathbf{J}\mathbf{s}_{\mathbf{x}}\mathbf{s}_{\mathbf{y}})(\mathbf{ST}(\mathbf{G}_{1},\mathbf{x},\mathbf{y})) =$	573 +	6	01 + -	567	-+	579 +	597	
	$100792 x^{637}$	890	$72x^{597}$	104272	x ⁶⁴⁷	$100624 x^{63}$	⁵ 9821	$0 x^{627}$
+	637	+5	97	647	+ ·	635	-+62	7
	$108580 x^{661}$	115	$520 \mathrm{x}^{681}$	16422	x ⁶⁷⁹	$116242 x^{683}$	³ 12010	$06 {\rm x}^{695}$
+	661	+	581	97		683	-+) 5
	$119160 x^{691}$	1317	$712 \mathrm{x}^{727}$	95676	x ⁷⁵⁹	49320 x^{771}	47160	\mathbf{x}^{753}
Ŧ	691	7	727	253	— Ŧ	257	25	1
	$441864x^{769}$	140	6566x ⁷⁶⁷	3310	$008 \mathrm{x}^{815}$	1682042	x ⁸²¹ 12	$21404 \mathrm{x}^{855}$
Ŧ	769	+	767	81:	5	821	— + —	95
	$183918x^{859}$	185	$542 x^{863}$	55692	$0 x^{863}$	199020 x	⁸⁹³ 412	036 x ⁹⁰⁹
+	859	8	63	863		893	- -	909
	226500 x ⁹⁵³	_455	500 x ⁹⁵⁵	456820	$3 x^{957}$	$_{6324x^{975}}$	50190	$00 x^{1003}$
+	953		191	957	+	13	10	03
	3740x ¹⁰⁷¹	5681	$140 \mathrm{x}^{1067}$	67062	$8 x^{1159}$			
+	7	1	067	115	59 [—] .			

www.jchr.org

JCHR (2024) 14(3), 879-898 | ISSN:2251-6727

(2E I)(ST(C + y)) =	$2x^{573}$	$2x^{601}$	$2 x^{567}$	$2x^{579}$	$2x^{4}$	⁵⁹⁷ 2 x	⁶³⁷ 2	x 597	$2x^{647}$	$2 x^{635}$
$(2E_x)(3T(G_1, x, y)) = \frac{1}{5}$	573	601	567	579	597	63	57 [–] 5	97	647	635
2	x^{627} 22	x ⁶⁶¹ 2x	⁶⁸¹ 2	x^{679}	$2x^{683}$	$2 x^{695}$	$2 x^{691}$	$2 x^{727}$	$4 x^7$	59
+ -	$\frac{1}{527} + \frac{1}{6}$	$\frac{-}{61}$ + $\frac{-}{61}$	$\frac{-}{81}$ + -	<u> </u>	683 +	695	691	727	759)
2	x^{771} 2x	⁷⁵³ 6 x	⁷⁶⁹ 2	v ⁷⁶⁷	$4 \mathbf{v}^{815}$	$2 \mathbf{v}^{821}$	$4 v^{855}$	$2 e^{859}$	$2 \mathbf{v}^8$	63
+	$\frac{1}{771} + \frac{23}{74}$	$\frac{1}{12} + \frac{0}{76}$	+ -	$\frac{1}{167} + \frac{1}{167}$	015	$+\frac{2\pi}{921}$	$+\frac{7}{295}$	$+\frac{2x}{950}$	$-+\frac{2x}{962}$,
	863	893 . 9		953	815 - ⁹⁵⁵	821	285	839 (1003	803) '1
+ 6	$\frac{\mathbf{x}^{000}}{-+} + \frac{2\mathbf{x}}{+}$	$-+\frac{4x^{2}}{+}$	+	x	$\frac{2x^{33}}{+}$	$\frac{4x^{337}}{+}$	$\frac{4x^{3/3}}{+}$	$4x^{1003}$	$+\frac{4x^{10}}{$	_
8	63 89	93 90	9 95	53	955	957	975	1003	1071	L
4	$-x^{1067}$ 4	x^{1159}								
$+\frac{1}{1}$	067 + 1	159								
	82052:	$x^{281}y^{292}$	8992	$0 x^{281} y^3$	20 8	0366 x ²⁸	y^{286}	83798×	²⁸⁶ y ²⁹³	
$(\mathbf{E}_{x}\mathbf{J}\mathbf{s}_{x}\mathbf{s}_{y})(\mathbf{ST}(\mathbf{G}_{1}, \mathbf{x}, \mathbf{y}))$	=573	+		601	-+	567	+ -	57	9	
	8906	$0 x^{292} y^{305}$	100	$792 \mathrm{x}^{293}$	³ y ³⁴⁴	89072 x	x ²⁹³ y ³⁰⁴	1042	$72 x^{304} y$	/ 343
	+ 5	97	+	637	+	59	7		647	
	10062	$24x^{304}y^{33}$	1 98	$210 \mathrm{x}^{30}$	$5 y^{322}$ +	108580	x ³⁰⁵ y ³⁵⁶	+ 115	520 x ³²	⁰ y ³⁶¹
		635	·	627		66	51		681	
	+ 16422	$2x^{322}y^{357}$	+ 116	$242 x^{322}$	$\frac{y^{361}}{+}$ +	1201062	$x^{322}y^{373}$	+ 1191	$60 x^{331}$	y ³⁶⁰
	. ç	7		683		69.	5		691	
	+ 13171	$2 x^{343} y^{38}$	4 95	676x ³⁵⁷	$y^{402} +$	49320 >	$x^{360}y^{411}$	4716	$50 \mathrm{x}^{360} \mathrm{y}$	393
		727		253		25	7		251	
	+ 44186	$4 x^{361} y^{400}$	$^{-+}$ $^{-14}$	6566x ³	<u>y</u> ⁴⁰⁶ +	33100	$08 \mathrm{x}^{384} \mathrm{y}^{4}$	$\frac{131}{-+}$ $\frac{16}{-+}$	8204 x ²	⁹³ y ⁴²⁸
	7	'69 402 45	2	767	06 452	8	15	7	821	100 155
	+	$94 x^{402} y^{43}$	$^{3} + \frac{18}{-+}$	3918x*	<u>y</u>	185542	$2 x^{400} y^{43}$	-+	6920x	<u>чо</u> у чээ
		95 • 428 465		859	478	8	63 453 500		863	500
	+ 19902	0x *20 y *05	$+\frac{412}{-+}$	036x-5	<u>y</u> +++	226500	x * 5 y 500	+ 455	500 x *55	<u>y 500</u>
	45.00	93 0 455 502		909	510	953	3 478 525	27	191	561
	+ 45682	0x y y	-+	12 12	y + -	100	x y	+	$\frac{40 x^{-3} y}{7}$	
	56914	<i>51</i> <i>5</i> ⁵¹⁰ , 557	670	13	7,602	100	3		/	
	$+\frac{308140}{10}$	JX Y	+ - 670	1150	<u>у</u>					
	10	07		1139						

The formulas in Table 1 and the equations above provide the following results:

 $S_{1}(G_{1}) = (s_{x} + s_{y})(ST(G; x, y))|(1, 1) = 45968.$ $S_{2}(G_{1}) = (s_{x}s_{y})(ST(G; x, y))|(1, 1) = 9736630.$ $S_{3}(G_{1}) = (E_{x}E_{y})(ST(G; x, y))|(1, 1) = 0.000370867.$ $FS(G_{1}) = (s_{x}^{2} + s_{y}^{2})(ST(G; x, y))|(1, 1) = 19578212.$

$$RS(G_1) = (s_x s_y (s_x + s_y))(ST(G; x, y))(1, 1)$$

= 8544281706.

 $SDDS(G_{1}) = (s_{x}E_{y} + E_{x}s_{y})(ST(G;x,y))|(1,1)$ = 112.6173684. $ISSI(G_{1}) = (E_{x}Js_{x}s_{y})(ST(G;x,y))|(1)$ = 11460.63794. $HS(G_{1}) = (2E_{x}J)(ST(G,x,y))|(1) = 0.141375317.$ $AS(G_{1}) = (E_{x}c_{-2}Js_{x}^{3}s_{y}^{3})(ST(G,x,y))|(1)$ = 534864898.3.

Theorem 3.1.3. Let G_2 be the chemical graph of CID89869520 structure. Then

$$ST(G_{1}, x, y) = \mathop{a}\limits_{22\ell 28} d_{22,28} x^{22} y^{28} + \mathop{a}\limits_{22\ell 26} d_{22,26} x^{22} y^{26} + \mathop{a}\limits_{22\ell 24} d_{22,24} x^{22} y^{24} + \mathop{a}\limits_{24\ell 26} d_{24,26} x^{24} y^{26} + \\ + \mathop{a}\limits_{24\ell 34} d_{24,34} x^{24} y^{34} + \mathop{a}\limits_{26\ell 28} d_{26,28} x^{26} y^{28} + \mathop{a}\limits_{26\ell 30} d_{26,30} x^{26} y^{30} + \\ + \mathop{a}\limits_{26\ell 36} d_{26,36} x^{26} y^{36} + \\ + \mathop{a}\limits_{28\ell 38} d_{28,38} x^{28} y^{38} + \\ \mathop{a}\limits_{28\ell 30} d_{28,30} x^{28} y^{30}.$$

www.jchr.org

JCHR (2024) 14(3), 879-898 | ISSN:2251-6727

Proof. From Figure 2, it is easy to see that $|V| = 12, |E| = 12 \text{ and also } |E_{22,28}| = 1, |E_{22,26}| = 1,$ $|E_{22,24}| = 1, |E_{24,26}| = 1, |E_{24,34}| = 1, |E_{293,344}| = 1,$ $|E_{26,28}| = 1, |E_{26,30}| = 1, |E_{26,36}| = 1, |E_{28,38}| = 1$ and $|E_{28,30}| = 1$ $ST(G_1, x, y) = a d_{22,28} x^{22} y^{28} + a d_{22,26} x^{22} y^{26} + a d_{22,24} x^{22} y^{24} + a d_{24}$

$$\Gamma(G_{1}, \mathbf{x}, \mathbf{y}) = \overset{\circ}{\underset{22\ell 28}{\mathbf{a}}} d_{22,28} \mathbf{x}^{22} \mathbf{y}^{28} + \overset{\circ}{\underset{22\ell 26}{\mathbf{a}}} d_{22,26} \mathbf{x}^{22} \mathbf{y}^{26} + \overset{\circ}{\underset{22\ell 24}{\mathbf{a}}} d_{22,24} \mathbf{x}^{22} \mathbf{y}^{24} + \overset{\circ}{\underset{24\ell 26}{\mathbf{a}}} d_{24,26} \mathbf{x}^{24} \mathbf{y}^{26}$$

$$+ \overset{\circ}{\underset{24\ell 34}{\mathbf{a}}} d_{24,34} \mathbf{x}^{24} \mathbf{y}^{34} + \overset{\circ}{\underset{26\ell 28}{\mathbf{a}}} d_{26,28} \mathbf{x}^{26} \mathbf{y}^{28} + \overset{\circ}{\underset{26\ell 30}{\mathbf{a}}} d_{26,30} \mathbf{x}^{26} \mathbf{y}^{30} + \overset{\circ}{\underset{26\ell 36}{\mathbf{a}}} d_{26,36} \mathbf{x}^{26} \mathbf{y}^{36}$$

$$+ \overset{\circ}{\underset{28\ell 38}{\mathbf{a}}} d_{28,38} \mathbf{x}^{28} \mathbf{y}^{38} + \overset{\circ}{\underset{28\ell 30}{\mathbf{a}}} d_{28,30} \mathbf{x}^{28} \mathbf{y}^{30}.$$

$$ST(G_1, x, y) = x^{22}y^{28} + x^{22}y^{26} + x^{22}y^{24} + x^{24}y^{26} + x^{24}y^{34} + x^{26}y^{28} + x^{26}y^{30} + x^{26}y^{36} + 3x^{28}y^{38} + x^{28}y^{30}.$$

The chemical structure and 3D plots of the ST_{p} of CID89869520 structure are displayed Figure 5.

Figure 5. The chemical structure and the Plots of $ST_{\rm P}$ of CID89869520.

Theorem 3.1.4. The G_2 graph's various TIs are as follows: $S_1(G_1) = 680$ $SDDS(G_1) = 24.64251034$ $S_2(G_1) = 9632$ 7. $ISSI(G_1) = 167.6171151$ $S_3(G_1) = 0.015827701$ HS $(G_1) = 0.430028923$ $FS(G_1) = 19848$ $AS(G_1) = 37769.3089$ $RS(G_1) = 561488$ **Proof.** The following equations:

Proof. The following equations are derived from Theorem 3.1.3:

www.jchr.org

JCHR (2024) 14(3), 879-898 | ISSN:2251-6727

$$\begin{split} s_x(ST(G_1,x,y)) &= 22x^{2^2}y^{2^8} + 22x^{2^2}y^{2^8} + 22x^{2^2}y^{2^4} + 24x^{2^4}y^{2^6} + 24x^{2^4}y^{3^4} + 26x^{2^6}y^{3^8} + 26x^{2^6}y^{3^0} \\ &+ 26x^{2^6}y^{3^8} + 84x^{2^8}y^{3^8} + 28x^{2^8}y^{3^0}. \\ s_y(ST(G_1,x,y)) &= 28x^{2^2}y^{2^8} + 26x^{2^2}y^{2^6} + 24x^{2^2}y^{2^4} + 26x^{2^4}y^{2^6} + 34x^{2^4}y^{3^4} + 28x^{2^6}y^{2^8} + 30x^{2^6}y^{3^0} \\ &+ 36x^{2^6}y^{3^6} + 114x^{2^8}y^{3^8} + 30x^{2^8}y^{3^0}. \\ s_xs_y(ST(G_1,x,y)) &= 616x^{2^2}y^{2^8} + 572x^{2^2}y^{2^6} + 528x^{2^2}y^{2^4} + 624x^{2^4}y^{2^6} + 816x^{2^4}y^{3^4} + 728x^{2^6}y^{2^8} \\ &+ 780x^{2^6}y^{3^0} + 936x^{2^8}y^{3^6} + 3192x^{2^8}y^{3^8} + 840x^{2^8}y^{3^0}. \\ E_xE_y(G_1,x,y) &= \frac{x^{1^2}y^{2^8}}{616} + \frac{x^{2^2}y^{2^8}}{572} + \frac{x^{2^2}y^{2^4}}{528} + \frac{x^{2^4}y^{3^6}}{624} + \frac{x^{1^4}y^{3^4}}{816} + \frac{x^{1^6}y^{3^8}}{728} + \frac{x^{2^6}y^{3^6}}{780} + \frac{x^{1^8}y^{3^6}}{936} + \frac{3x^{1^8}y^{3^8}}{1064} \\ &+ \frac{x^{1^8}y^{3^0}}{840}. \\ s_x^2(ST(G_1,x,y)) &= 484x^{2^2}y^{2^4} + 484x^{2^2}y^{2^6} + 484x^{2^2}y^{2^4} + 576x^{2^4}y^{2^6} + 576x^{2^4}y^{3^4} + 676x^{2^6}y^{2^8} + 676x^{2^6}y^{3^9} \\ &+ 676x^{1^6}y^{1^6} + 2352x^{1^8}y^{1^8} + 784x^{1^8}y^{1^9}. \\ s_y^2(ST(G_1,x,y)) &= 784x^{2^2}y^{2^3} + 676x^{2^2}y^{2^6} + 576x^{2^2}y^{2^4} + 676x^{2^4}y^{2^6} + 1156x^{2^4}y^{3^4} + 784x^{2^6}y^{2^8} + 900x^{2^8}y^{3^9} \\ &+ 1296x^{2^6}y^{1^6} + 4332x^{2^4}y^{3^8} + 900x^{1^3}y^{1^9}. \\ s_xs_y(s_x + s_y)(ST(G_1,x,y)) &= 30800x^{2^2}y^{2^2} + 27456x^{2^2}y^{2^6} + 24288x^{2^2}y^{2^4} + 31200x^{3^4}y^{2^6} + 47328x^{3^4}y^{1^4} \\ &+ 39312x^{2^6}y^{3^8} + \frac{394x^{1^8}y^{1^9}}{195} + \frac{493x^{2^4}y^{2^4}}{132} + \frac{1671x^{8^4}y^{3^6}}{266} + \frac{421x^{2^8}y^{1^6}}{210}. \\ (E_xJs_xs_y)(ST(G_1,x,y)) &= \frac{308x^{5^9}}{25} + \frac{143x^{4^4}}}{23} + \frac{264x^{4^6}}{23} + \frac{312x^{5^9}}{234} + \frac{1671x^{8^4}y^{3^4}}{27} + \frac{165x^{2^4}}{210}. \\ (E_xJs_xs_y)(ST(G_1,x,y)) &= \frac{308x^{5^9}}{25} + \frac{143x^{4^4}}{23} + \frac{269x^{3^4}}{29} - \frac{312x^{5^6}}{234} + \frac{313x^{2^5}y^{4^6}}{21} + \frac{17x^{5^6}}{14} + \frac{315x^{5^6}}{29}. \\ (E_xJs_xs_y)(ST(G_1,x,y)) &= \frac{36$$

The formulas in Table 1 and the equations above provide the following results:

$$S_{1}(G_{1}) = (s_{x} + s_{y})(ST(G; x, y))(1, 1) = 680.$$

$$S_{2}(G_{1}) = (s_{x}s_{y})(ST(G; x, y))(1, 1) = 9632.$$

$$S_{3}(G_{1}) = (E_{x}E_{y})(ST(G; x, y))(1, 1) = 0.015827701.$$

 $FS(G_{1}) = (s_{x}^{2} + s_{y}^{2})(ST(G; x, y))|(1, 1) = 19848.$ $RS(G_{1}) = (s_{x}s_{y}(s_{x} + s_{y}))(ST(G; x, y))|(1, 1) = 561488.$ $SDDS(G_{1}) = (s_{x}E_{y} + E_{x}s_{y})(ST(G; x, y))|(1, 1) = 24.64251034.$ $ISSI(G_{1}) = (E_{x}Js_{x}s_{y})(ST(G; x, y))|(1) = 167.6171151.$ $HS(G_{1}) = (2E_{x}J)(ST(G; x, y))|(1) = 0.430028923.$

www.jchr.org

JCHR (2024) 14(3), 879-898 | ISSN:2251-6727

 $AS(G_1) = \left(E_x c_{-2} J s_x^3 s_y^3\right) (ST(G; x, y)) (1) = 37769.30899.$

For all the drugs considered we now list the STpolynomials and their plots are obtained as in the case of Theorems 3.1.1 and 3.1.3. These are listed in the following table.

Table2. ST- Polynomials and their plots for COVID -19 drugs.

www.jchr.org

www.jchr.org

JCHR (2024) 14(3), 879-898 | ISSN:2251-6727

Application of topological descriptors:

Drugs

We will develop a relationship between topological descriptors and the COVID-19 drugsEnthalpy of vaporization (E), flash point (FP), molar refraction (MR), polarizability (P), surface tension (T), and molar volume (MV)in this section. The different Topological indices are obtained from ST_p using Theorem 3.1.1, 3.1.3 and Table 2 which are presented in Table 3.

For each plot, we performed polynomial fitting in order to generate an equation. Table 5 shows the adjusted R² value for each plot. Fordrugs E, F, MR, P, T and MV it can be shown that SDDS have the best values.The highest value of adj. R² ensures the best fit for the data and, as a result, the equation produced from it has the least amount of inaccuracy.

Table 4 shows the experimental values for the physical and chemical characteristics of selected COVID -19 drugs.

Drugs	Topologi	Topological Descriptors								
	S ₁	S ₂	S ₃	F	RS	SDDS	ISSI	HS	AS	
CID71749833	45968	9736630	0.00037	19578212	8544281706	112.617	11460.638	0.1414	534864898.34	
CID89869520	680	9632	0.01583	19848	561488	24.643	167.617	0.4300 3	37769.31	
CID10009410	34922	6407768	0.00043	12878636	4852309120	98.479	8709.062	0.1423	304196201.26	
CID44271905	34252	6184775	0.00045	12433442	4624232876	98.515	8540.683	0.1456	289873271.46	
CID3010243	32060	5521148	0.00048	11101256	3929180860	96.521	7993.424	0.1491	246360882.12	
CID44271958	30142	5006351	0.00052	10069606	3457674422	94.552	7513.713	0.1524	216793489.60	

 Table 3. Topological indices derived from ST- Polynomial of COVID -19 drugs.

	Table 4. COVID -19 drugs and their properties.								
Ш	F	FP	MR	р	т				

PubChem ID	Ε	FP	MR	Р	Т	MV
CID71749833	140.8	512.7	179.2	71	49.5	540.5
CID89869520	141.1	513.7	179.2	71	49	544.7
CID10009410	140.8	512.7	179.2	71	49.5	540.5
CID44271905	140	509.5	174.6	69.2	50.5	522.7
CID3010243	138.9	505.1	169.5	67.2	50.9	507.9
CID44271958	63.2	185.5	41.3	16.4	72.9	110

Table 5. The adj. \mathbb{R}^2 values for the fitted curve of	of topological descriptors against COVID-	19 properties
--	---	---------------

Topological						
Descriptor	Е	FP	MR	Р	Т	MV
\mathbf{S}_1	0.9676	0.9676	0.9656	0.9657	0.9586	0.9628
S ₂	0.9392	0.9391	0.9389	0.9389	0.9292	0.9355
S ₃	0.572	0.832	0.8652	0.8647	0.8555	0.8682
FS	0.9394	0.9393	0.939	0.9391	0.9294	0.9357
RS	0.902	0.9018	0.9035	0.9035	0.8914	0.8997
SDDS	1	1	0.9988	0.9988	0.9979	0.998
ISSI	0.9674	0.9674	0.9655	0.9655	0.9584	0.9626

www.jchr.org

JCHR (2024) 14(3), 879-898 | ISSN:2251-6727

HS	0.9892	0.9891	0.9893	0.9893	0.9867	0.9884
AS	0.9021	0.9019	0.9036	0.9036	0.8915	0.8998

QSPR modelling shows that SDDS is best predictive Topological indices for E, F, MR, P, T and MV. Figures (Figure 6, Figure 7, Figure 8, Figure 9, Figure 10 and Figure 11) show their plots.

The Equations obtained between SDDS index against Enthalpy as follows

$$\mathbf{E} = \mathbf{a} + \mathbf{b}_1 \mathbf{S} \mathbf{D} \mathbf{D} \mathbf{S} + \mathbf{b}_2 \mathbf{S} \mathbf{D} \mathbf{D} \mathbf{S}^2 + \mathbf{b}_3 \mathbf{S} \mathbf{D} \mathbf{D} \mathbf{S}^3$$

 $+ b_4 SDDS^4 - - - - (2)$

Where

a =199210.8982,

 $b_1 = -13927.5157, b_2 = 294.5291,$

 $b_3 = -2.5055, b_4 = 0.0075$.

Figure 6. Curve fitting of Enthalpy against SDDS index.

The Equations obtained between SDDS index against Flash point as follows

 $FP = a + b_1SDDS + b_2SDDS^2 + b_3SDDS^3 + b_4SDDS^4 - - - - (3)$ Where a = 841958.915, $b_1 = -58870.427$, $b_2 = 1244.9656$, $b_3 = -10.5908$, $b_4 = 0.0319$.

Figure 7. Curve fitting of Flash point against SDDS index.

The Equations obtained between SDDS index against Molar Refraction as follows

$$MR = a + b_{1}SDDS + b_{2}SDDS^{2}$$

+ $b_{3}SDDS^{3} + b_{4}SDDS^{4} - - - - (4)$
Where $a = 322997.2742$

 $\mathbf{b}_1 = -22579.4018, \, \mathbf{b}_2 = 477.266,$

 $b_3 = -4.0579, b_4 = 0.0122.$

Figure 8. Curve fitting of Molar Refraction against SDDS index.

The Equations obtained between SDDS index against Polarization as follows

$$P = a + b_1 SDDS + b_2 SDDS^2$$

+ $b_3 SDDS^3 + b_4 SDDS^4 - - - - (4)$
Where $a = 128084.4592,$
 $b_1 = -8953.8994, b_2 = 189.2622,$
 $b_3 = -1.6092, b_4 = 0.0048.$

Figure 9. Curve fitting of Polarization against SDDS index.

The Equations obtained between SDDS index against Surface Tension as follows

www.jchr.org

 $T = a + b_1 SDDS + b_2 SDDS^2$ + $b_3 SDDS^3 + b_4 SDDS^4 - - - - (5)$ Where a = -56510.4643, $b_1 = 3956.5256, b_2 = -83.6491,$ $b_3 = 0.7114, b_4 = -0.0021.$

Figure 10. Curve fitting of Surface Tension against SDDS index.

The Equations obtained between SDDS index against Molar Volume as follows

 $\mathbf{MV} = \mathbf{a} + \mathbf{b}_1 \mathbf{SDDS} + \mathbf{b}_2 \mathbf{SDDS}^2$

 $+b_{2}SDDS^{3} + b_{4}SDDS^{4} - - - - (6)$

a =100814.8225,

$$b_1 = -69962.752, b_2 = 1478.7889,$$

$$b_3 = -12.573, b_4 = 0.0378.$$

Where

Figure 11. Curve fitting of Surface Tension against SDDS index.

The values of SDDS topological descriptor can be used to compute the E, F, MR, P, T and MV of COVID- 19 drugs, as shown by equations (2) to (8). These Eight equations make it easy for us to do so. **Conclusion** From Table 5, It is clear that most of the physiochemical features of the medications used to treat COVID -19 may be predicted using the proposed indices. Hence, we observe that

- Enthalpy can be predicted using $S_1, S_2, FS, RS, ISSI, AS$ as the corresponding adj. R² values are 0.9676, 0.9392, 0.833, 0.9394, 0.902, 1, 0.9674, 0.9892 and 0.9021 respectively. Among these, we see that SDDS index is the best suited for predicting Enthalpy.
- Flash point can be predicted using $S_1, S_2, S_3, FS, RS, ISSI, AS$ as the corresponding adj. R² values are 0.9676, 0.9391, 0.832, 0.9393, 0.9018, 1, 0.9674, 0.9891 and 0.9019 respectively. We can see that SDDS index is the one of these that is most effective at predicting the Flash point.
- Molar Refraction can be predicted using $S_1, S_2, S_3, FS, RS, SDDS, ISSI, HS, AS$ as the corresponding adj. R² values are 0.997, 0.9947, 0.9582, 0.9947, 0.9919, 0.9972, 0.997, 0.9651 and 0.992 respectively. We observe that the SDDS index among these is most effective at estimating Molar Refraction.
- Polarization can be predicted using $S_1, S_2, FS, RS, SDDS, ISSI, HS, AS$ as the corresponding adj. R² values are 0.9657, 0.9389, 0.8647, 0.9391, 0.9035, 0.9988, 0.9655, 0.9893 and 0.9036 respectively. Among these, we can see that the SDDS index performs the task of identifying Polarization the best.
- Surface Tension can be predicted using $S_1, S_2, FS, RS, ISSI, AS$ as the corresponding adj. R² values are 0.9586, 0.9292, 0.8555, 0.9294, 0.8914, 0.9979, 0.9584, 0.9867 and 0.8915 respectively. We can see that the SDDS index is the

one that can predicts Surface Tension the best out of all of these. Molar Volume can be predicted using

 $S_1, S_2, FS, RS, SDDS, ISSI, HS, AS$ as the

corresponding adj. \mathbb{R}^2 values are 0.9628, 0.9355, 0.8682, 0.9357, 0.8997, 0.998, 0.9626, 0.9884 and 0.8998 respectively. We can observe that among

www.jchr.org

JCHR (2024) 14(3), 879-898 | ISSN:2251-6727

these, the SDDS index performs the best at predicting Molar Volume.

Numerous academics have investigated the topological indices' effects on the qualities of anti-covid medicines. The best study on some anti-covid medications chosen with TIs is this one. These particular medications are now regarded as crucial in the management of COVID - 19. The findings of this study will help advance the chemistry, pharmaceutical science, and most critically, the treatment of COVID-19.

Acknowledgment

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Larg Groups Project under grant number (R.G.P.2/163/44).

Availability of Data and Materials

All data generated or analysed during this study are included in this published article.

Refrences

- B. Figuerola, C. Avila, The phylum bryozoa as a promising source of anticancer drugs, Mar. Drugs, 17 (2019), 477. https://doi.org/10.3390/md17080477
- G. Genovese, A. K. Kähler, R. E. Handsaker, J. Lindberg, S. A. Rose, S. F. Bakhoum, et al., Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence, New Eng. J. Med., 371 (2014), 2477-2487. https://doi.org/10.1056/NEJMoa1409405

https://doi.org/10.1056/NEJMoa1409405 3. T. Terwilliger, M. J. B. C. J. Abdul-Hay, Acute

- 3. 1. Terwiniger, M. J. B. C. J. Abdul-Hay, Acute lymphoblastic leukemia: A comprehensive review and 2017 update, Blood Cancer J., 7 (2017), e577e577. https://doi.org/10.1038/bcj.2017.53
- S. M. Hosamani, D. Perigidad, S. Jamagoud, Y. Maled, S. Gavade, QSPR anlysis of certain degree based topological indices, J. Statis. Appl. Prob., 6 (2017), 1-11. https://doi.org/10.18576/jsap/060211
- M., Adnan, S. A. U. H. Bokhary, G. Abbas, T. Iqbal, Degree-based topological indices and QSPR analysis of antituberculosis drugs, J. Chem., 2022, Article ID 5748626. https://doi.org/10.1155/2022/5748626
- J. Liu, M. Arockiaraj, M. Arulperumjothi, S. Prabhu, Distance based and Bond additive topological indices of certain repurposed antiviral drug compounds tested for treating COVID19, Int. J. Quantum Chem., 121 (2021), e26617.

https://doi.org/10.1002/qua.26617

- 7. H. Zhang, F. Zhang, The Clar covering polynomial of hexagonal systems I, 69(1996) 147-167.
- E.J. Farrell, An introduction to matching polynomials, Journal of Combinatorial Theory, Series B, 27(1979), 75-86.
- F. Hassani, Ali Iranmanesh, SamanehMirzaie, Schultz and Modified Schultz Polynomials of C100 Fullerene, MATCH Commun. Math. Comput. Chem. 69 (2013) 87-92.
- T. Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, 51, (2013)1599-1607
- 11. D.B. West. An Introduction to Graph Theory. PrenticeHall. (1996).
- E. Deutsch, S. Klavžar, Computing Hosoya polynomials of graphs from primary subgraphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 627-644.
- M. Eliasi, A. Iranmanesh, Hosoya polynomial of hierarchical product of graphs, MATCH Commun. Math. Comput. Chem. 69 (2013)111-119.
- 14. H. Hosoya, On some counting polynomials in chemistry, Discrete Appl. Math. 19 (1988)239-257.
- 15. X. Lin, S.J. Xu, Y.N. Yeh, Hosoya polynomials of Circumcoronene series, MATCH Commun. Math. Comput. Chem. 69 (2013)755-763.
- 16. M. Alaeiyan, A. Bahrami and M.R. Farahani. Cyclically Domination Polynomial of Molecular Graph of Some Nanotubes. Digest Journal of Nanomaterials and Biostructures. 6(1) (2011)143-147.
- 17. A.C.Bartlett, C.V.Hollot, Huang Lin, Root locations of an entire polytope of polynomials: it suffices to check the edges, Math. Control Signals Systems, 1(1988)61-71.
- J.I. Brown, K. Dilcher, R.J. Nowakowski, Roots of independence polynomials of well-covered graphs, J. Algebraic Combinatorics, 11 (2000)197-210.
- 19. J.I. Brown, C.A. Hickman and R.J. Nowakowski, On the location of roots of independence polynomials, J. Algebr. Comb., 19: 273-282 (2004).
- 20. J.I. Brown and R. Nowakowski, Average independence polynomials, J. Combinatorial Theory, Ser. B, 93 (2005)313-318.
- 21. J.I. Brown, R. Nowakowski, Bounding the roots of independence polynomials, Ars Combinatorica, 58 (2001)113-120.

www.jchr.org

JCHR (2024) 14(3), 879-898 | ISSN:2251-6727

- 22. D.C. Fisher, A.E. Solow, Dependence polynomials, Discrete Math., 82 (1990)251-258.
- 23. I. Gutman, Some analytic properties of the independence and matching polynomials, MATCH Commun. Math.Comput. Chem., 28 (1992)139-150.
- 24. C. Hoede, X. Li, Clique polynomials and independent set polynomials of graphs, Discrete Mat. 25 (1994)219-228.
- 25. S. Klavzar, E. Deutsch. M-Polynomial and Degree-Based Topological Indices, Iranian Journal of Mathematical Chemistry, 6(2)(2015) 93-102.
- 26. F. Harary, Status and contrastatus, Sociometry, 22 (1959) 23 43.
- 27. H. S. Ramane, A. S. Yalnaik.Bounds for the status connectivity index of line graph, Int. J. Comput. Appl. Math. 12(2016) 305-310.
- 28. H. S. Ramane, A. S. Yalnaik, status connectivity indices of graphs and its applications to the boiling point of benzenoid hydrocarbons, Journal of Applied Mathematics and Computing, 55 (2017) 609-627.
- 29. H.S. Ramane, B. Basavanagoud, A.S. Yalnaik, Harmonic status index of graphs, Bulletin of Mathematical Sciences and Application, 17 (2016) 24 - 32.
- 30. H.S. Ramane, A.S. Yalnaik, R. Sharafdini, Status connectivity indices and coindices of graphs and its computation to some distance - balanced graphs, AKCE International Journal of graphs and combinatories, 17 (2020) 98-108.
- 31. K. Pattabiraman, A.Santhakumar, Second statusconncetivity indices and its coindices of composite graphs, Int. J. Math. Combin. 2(2019) 104-113.
- 32. K. Pattabiraman, A.Santhakumar, Bounds on hyperstatus conncetivity index of graphsTWMS J. App. and Eng. Math. 11(2021) 216-227.
- H. Wiener, Structural Determination of Paraffin Boiling Points. J. Am. Chem. Soc. 69: (1947)17-19.
- 34. M.C.Shanmukha, N.S.Basavarajappa, K.C.Shilpa, A.Usha, Degree-based topological indices on anticancer drugs with QSPR analysis, Heliyon, 6(6)(2020) e04235.
- 35. W. Gao, W. Wang, M.R. Farahani, Topological Indices Study of Molecular Structure in Anticancer Drugs, Journal of Chemistry, Volume 2016 |Article ID 3216327 | https://doi.org/10.1155/2016/3216327
- 36. O.C. Havare, Topological indices and QSPR modeling of some novel drugs used in the cancer treatment, Int. J.Qutum. Chem. 121(24) (2021)

e26813, https://doi.org/10.1002/qua.26813

- 37. S.A. U. Bokhary, M. Adnan, M.K. Siddiqui, M. Cancan, OnTopological Indices and QSPR Analysis of Drugs Used for the Treatment of Breast Cancer, Polycyclic Aromatic Compounds, 2021, https://doi.org/10.1080/10406638.2021.1977353.
- 38. M. Cancan,S. Ediz,M.R. Farahani, On ve-degree atom-bond connectivity, sum-connectivity, geometric-arithmetic and harmonic indices of copper oxide. Eurasian Chem. Commun. 2 (2020) 641-645.

https://doi.org/10.33945/SAMI/ECC.2020.5.11

39. M. Cancan, S. Ediz, M.Alaeiyan, M.R. Farahani, On Ve-degree molecular properties of copper oxide. Journal of Information and Optimization Sciences, 41(4),2020,949-957.

https://doi.org/10.1080/02522667.2020.1747191

- 40. S. Ediz, M. Cancan, M. Alaeiyan, M.R. Farahani. Ve-degree and Ev-degree topological analysis of some anticancer drugs. Eurasian Chemical Communications. 2(8), 2020, 834-840. https://doi.org/10.22034/ECC.2020.107867
- 41. W. Gao, M.R. Farahani, S. Wang, M.N. Husin. On the edge-version atom-bond connectivity and geometric arithmetic indices of certain graph operations. Applied Mathematics and Computation 308(1), 11-17, 2017. https://doi.org/10.1016/j.amc.2017.02.046
- 42. H. Wang, J.B. Liu, S. Wang, W. Gao, S. Akhter, M. Imran, M.R. Farahani. Sharp bounds for the general sum-connectivity indices of transformation graphs. Discrete Dynamics in Nature and Society 2017. Article ID 2941615. https://doi.org/10.1155/2017/2941615
- 43. W. Gao, M.K. Jamil, A Javed, M.R. Farahani, M. Imran. Inverse sum indeg index of the line graphs of subdivision graphs of some chemical structures. UPB Sci. Bulletin B 80 (3), 97-104, 2018.
- 44. S Akhter, M. Imran, W. Gao, M.R. Farahani. On topological indices of honeycomb networks and graphene networks. Hacettepe Journal of Mathematics and Statistics 47 (1), 19-35, 2018.
- 45. X. Zhang, X. Wu, S. Akhter, M.K. Jamil, J.B. Liu, M.R. Farahani. Edge-version atom-bond connectivity and geometric arithmetic indices of generalized bridge molecular graphs. Symmetry 10 (12), 751, 2018. https://doi.org/10.3390/sym10120751

www.jchr.org

- 46. H. Yang, A.Q. Baig, W. Khalid, M.R. Farahani, X. Zhang. M-polynomial and topological indices of benzene ring embedded in P-type surface network. Journal of Chemistry 2019, Article ID 7297253, https://doi.org/10.1155/2019/7297253
- 47. D.Y. Shin, S. Hussain, F. Afzal, C. Park, D. Afzal, M.R. Farahani. Closed formulas for some new degree based topological descriptors using Mpolynomial and boron triangular nanotube. Frontiers in Chemistry, 1246, 2021. https://doi.org/10.3389/fchem.2020.613873
- 48. M. S. Sardar, S.-J. Xu, M. Cancan, M.R. Farahani, M. Alaeiyan, S.V. Patil. Computing Metric Dimension of Two Types of Claw-free Cubic Graphs with Applications. Journal of Combinatorial Mathematics and Combinatorial Computing. 2024, 119: 163-174. https://doi.org/10.61091/jcmcc119-17
- 49. A.A. Mughal, R.N. Jamil, M.R. Farahani, M. Alaeiyan, M. Cancan. Choosing Friends in Everyday Life by using Graph Theory. Journal of Combinatorial Mathematics and Combinatorial Computing. 2024, 119: 113-119. https://doi.org/10.61091/jcmcc119-12