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ABSTRACT:  

Graph labeling is a task of assigning integers to the vertices or edges or both subject to certain 

conditions. In this paper we prove that the extended grid EM(1,n)  admits Cube difference labeling. 

 

 

 

1. Introduction 

Several methods of  labeling in graphs have evolved and 

serve as beneficial models with wide range of 

applications in diverse fields such as technology etc.. 

Prominent among the types of labeling is cube difference 

labelling [1]. A useful survey on graph labeling by 

J.A.Gallian (2019) can be found in [5]. In this paper we 

deal only finite, simple, connected and undirected 

graphs.For number theory concepts refer [3] some of the 

basic definitions are given below 

 

Definition [1] 1.1. Let 𝐺 = ( 𝑉(𝐺), 𝐸(𝐺))  be a graph. 𝐺 

is said to be a cube difference labeling if there exists a 

bijection 𝑓: 𝑉(𝐺) → {0,1,2, … . . , 𝑝 − 1} such that the 

induced function 

 𝑓∗: 𝐸(𝐺) → 𝑁 is given by 

 𝑓∗(𝑢𝑣) =  |[𝑓(𝑢)]3 − [𝑓(𝑣)]3| for every 𝑢𝑣 ∈ 𝐸(𝐺) 

are all distinct. Any graph which admits cube difference 

labeling is said to be cube difference labeling graph. 

 

Definition [6], [7] 1.2. A two-dimensional grid (also 

called a Mesh) 𝑀(𝑟, 𝑠)  is a graph whose vertex set is the 

set of ordered pairs on nonnegative integers, {(𝑖, 𝑗): 0 ≤

𝑖 < 𝑟, 0 ≤ 𝑗 < 𝑠}, in which there is an edge between 

vertices (𝑖, 𝑗)  and (𝑘, 𝑙)   if either |𝑖 − 𝑘| = 1  and 𝑗 = 𝑙 

or 𝑖 = 𝑘  and |𝑗 − 𝑙| = 1 . For any 𝑖, 0 ≤ 𝑖 < 𝑟 , the 

subset of vertices {(𝑖, 𝑗): 0 ≤ 𝑗 < 𝑠}  will be called the 𝑖𝑡ℎ 

row of the grid. For any 𝑗, 0 ≤ 𝑗 < 𝑠 , 𝑗𝑡ℎ the column is 

similarly defined as the set {(𝑖, 𝑗): 0 ≤ 𝑖 < 𝑟}. 

Definition [6], [7] 1.3. The extended grid  𝐸𝑀(𝑟, 𝑠)   is a 

graph whose vertex set is the set of pairs on nonnegative 

integers, {(𝑖, 𝑗): 0 ≤ 𝑖 < 𝑟, 0 ≤ 𝑗 < 𝑠} , in which there is 

an edge between vertices(𝑖, 𝑗) and  (𝑘, 𝑙)  if and only if 

|𝑖 − 𝑘| ≤ 1   and |𝑗 − 𝑙| ≤ 1.  Thus, the extended grid is 

obtained from a two-dimensional grid by adding 

diagonal edges to the nodes. The graph 𝐸𝑀(𝑚, 𝑛)  

consists of 𝑚 rows of 𝑛𝐾4  graphs and 𝑛 columns of  𝑚𝐾4  

graphs. 

 

2. Results 

Theorem 2.1. 

The extended grid 𝐸𝑀(1, 𝑛) admits cube difference 

labeling, for . 

Proof: 

Let 𝐸𝑀(1, 𝑛)  be an extended grid with 1 row and 𝑛 

columns or 𝑛𝐾4 graphs.  

We denote the extended grid 𝐸𝑀(1, 𝑛)  by  𝐺 having 

vertices 

 𝑣0, 𝑣1, 𝑣2, . . . . . . . . , 𝑣2𝑛+1,  and 

edges 𝑒1, 𝑒2, . . . . . . . . , 𝑒5𝑛+1 . 

      We find that  

|𝑉(𝐺)| = 2(𝑛 + 1), 

|𝐸(𝐺)| = 5𝑛 + 1. 

            Define 𝒫: 𝑉(𝐺) → {0,1,2, … . . ,2𝑛 + 1}   

2n 
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            by  𝒫(𝑣𝑖) = 𝑖, 0 ≤ 𝑖 < 2𝑛 + 1 

             𝒫 induces a cube difference labeling on G. 

            For if, 𝒫∗  be the induced function defined       

            by 

             𝒫∗: 𝐸(𝐺) → 𝑁 such that 

           𝒫∗(𝑣𝑙𝑣𝑚) = | [𝒫(𝑣𝑙)]3 − [𝒫(𝑣𝑚)]3 | 

            Let 𝐸 =  𝐸1⋃𝐸2⋃ 𝐸3⋃ 𝐸4⋃ 𝐸5  Were 

            𝐸1 = {𝑒𝑠/ 𝑒𝑠 =  𝑣2𝑠−1𝑣2𝑠+1, 1 ≤ 𝑠 ≤ 𝑛 } 

     𝐸2 = {𝑒𝑠/ 𝑒𝑠 =  𝑣2𝑠−2𝑣2𝑠 , 1 ≤ 𝑠 ≤ 𝑛 } 

            𝐸3 = {𝑒𝑠/ 𝑒𝑠 =  𝑣2𝑠−2𝑣2𝑠−1, 1 ≤ 𝑠 ≤ 𝑛 + 1 } 

           𝐸4 = {𝑒𝑠/ 𝑒𝑠 =  𝑣2𝑠−2𝑣2𝑠+1, 1 ≤ 𝑠 ≤ 𝑛 } 

    𝐸5 = {𝑒𝑠/ 𝑒𝑠 =  𝑣2𝑠−1𝑣2𝑠 , 1 ≤ 𝑠 ≤ 𝑛 }. 

 To prove that 𝒫∗  is injective in 𝐸. 

 Claim 1: 𝒫∗   is injective in 𝐸1. 

        Let 𝑒1, 𝑒2, . . . . . . . . , 𝑒𝑛  be the 𝑛 edges of 𝐸1. 

        It is visible that 

𝒫(𝑣1) < 𝒫(𝑣3) < 𝒫(𝑣5) < ⋯ < 𝒫(𝑣2𝑛−1)

< 𝒫(𝑣2𝑛+1) 

 

Then 

[𝒫(𝑣1)]3 < [𝒫(𝑣3)]3 < [𝒫(𝑣5)]3 <……<

[𝒫(𝑣2𝑛−1)]3 < [𝒫(𝑣2𝑛+1)]3 

       So 

 |[𝒫(𝑣1)]3 − [𝒫(𝑣3)]3| < |[𝒫(𝑣3)]3 − [𝒫(𝑣5)]3| <

⋯ < |[𝒫(𝑣2𝑛−1)]3 − [𝒫(𝑣2𝑛+1)]3| 

Hence 

𝒫∗(𝑣1𝑣3) < 𝒫∗(𝑣3𝑣5) < ⋯ < 𝒫∗(𝑣2𝑛−1𝑣2𝑛+1) 

𝒫∗(𝑒1) < 𝒫∗(𝑒2) < ⋯ < 𝒫∗(𝑒𝑛) 

Thus 𝒫∗  is injective in 𝐸1. 

Hence all the edge labelings in 𝐸1 are distinct. 

Claim 2: 𝒫∗  is in injective in 𝐸2.  

Let 𝑒1, 𝑒2, . . . . . . . . , 𝑒𝑛  be the 𝑛 edges of 𝐸2. 

It is clear that 

𝒫(𝑣0) < 𝒫(𝑣2) < 𝒫(𝑣4) < ⋯ < 𝒫(𝑣2𝑛−2) < 𝒫(𝑣2𝑛) 

      Then 

 [𝒫(𝑣0)]3 < [𝒫(𝑣2)]3 < [𝒫(𝑣4)]3 <……<

[𝒫(𝑣2𝑛−2)]3 < [𝒫(𝑣2𝑛)]3 

So 

 |[𝒫(𝑣0)]3 − [𝒫(𝑣2)]3| < |[𝒫(𝑣2)]3 − [𝒫(𝑣4)]3| <

⋯ < 

|[𝒫(𝑣2𝑛−2)]3 − [𝒫(𝑣2𝑛)]3| 

Hence 

𝒫∗(𝑣0𝑣2) < 𝒫∗(𝑣2𝑣4) < ⋯ < 𝒫∗(𝑣2𝑛−2𝑣2𝑛) 

𝒫∗(𝑒1) < 𝒫∗(𝑒2) < ⋯ < 𝒫∗(𝑒𝑛) 

Thus 𝒫∗  is injective in 𝐸2. 

Hence all the edge labelings in 𝐸2 are distinct. 

            Claim 3:  𝒫∗  is in injective in 𝐸3.  

Let 𝑒1, 𝑒2, . . . . . . . . , 𝑒𝑛+1  be the 𝑛 + 1 edges of 𝐸3. 

It is clear that 

𝒫(𝑣0) < 𝒫(𝑣1) < 𝒫(𝑣2) < ⋯ < 𝒫(𝑣2𝑛) < 𝒫(𝑣2𝑛+1) 

Then 

 [𝒫(𝑣0)]3 < [𝒫(𝑣1)]3 < [𝒫(𝑣2)]3 <……<

[𝒫(𝑣2𝑛)]3 < [𝒫(𝑣2𝑛+1)]3 

So 

 |[𝒫(𝑣0)]3 − [𝒫(𝑣1)]3| < |[𝒫(𝑣2)]3 − [𝒫(𝑣3)]3| <

⋯ < 

|[𝒫(𝑣2𝑛)]3 − [𝒫(𝑣2𝑛+1)]3| 

Hence 

𝒫∗(𝑣0𝑣1) < 𝒫∗(𝑣2𝑣3) < ⋯ < 𝒫∗(𝑣2𝑛𝑣2𝑛+1) 

      𝒫∗(𝑒1) < 𝒫∗(𝑒2) < ⋯ < 𝒫∗(𝑒𝑛+1) 

Thus 𝒫∗  is injective in 𝐸3. 

Hence all the edge labelings in 𝐸3 are distinct. 

Claim 4: 𝒫∗  is in injective in 𝐸4.  

      Let us consider any two edges 

𝑒1 = 𝑣2𝑣5, 𝑒2 = 𝑣6𝑣9 where 𝑒1, 𝑒2 ∈  𝐸4 

It is visible that  

𝒫(𝑣2) < 𝒫(𝑣5) < 𝒫(𝑣6) < 𝒫(𝑣9) 

⟹ [𝒫(𝑣2)]3 < [𝒫(𝑣5)]3 < [𝒫(𝑣6)]3 < [𝒫(𝑣9)]3 

Hence 

  |[𝒫(𝑣2)]3 − [𝒫(𝑣5)]3| < |[𝒫(𝑣6)]3 − [𝒫(𝑣9)]3| 

𝒫∗(𝑣2𝑣5) < 𝒫∗(𝑣6𝑣9) 

𝒫∗(𝑒1) < 𝒫∗(𝑒2) 

𝒫∗(𝑒1) ≠ 𝒫∗(𝑒2) 

Thus 𝒫∗  is injective in 𝐸4. 

http://www.jchr.org/
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Hence all the edge labelings in 𝐸4 are distinct. 

Claim 5: 𝒫∗  is in injective in 𝐸5.  

Let 𝑒1, 𝑒2, . . . . . . . . , 𝑒𝑛  be the 𝑛 edges of 𝐸5. 

It is clear that 

𝒫(𝑣1) < 𝒫(𝑣2) < 𝒫(𝑣3) < ⋯ < 𝒫(𝑣2𝑛−1) < 𝒫(𝑣2𝑛) 

Then 

 [𝒫(𝑣1)]3 < [𝒫(𝑣2)]3 < [𝒫(𝑣3)]3 <……<

[𝒫(𝑣2𝑛−1)]3 < [𝒫(𝑣2𝑛)]3 

So 

 |[𝒫(𝑣1)]3 − [𝒫(𝑣2)]3| < |[𝒫(𝑣3)]3 − [𝒫(𝑣4)]3| <

⋯ < |[𝒫(𝑣2𝑛−1)]3 − [𝒫(𝑣2𝑛)]3| 

Hence 

𝒫∗(𝑣1𝑣2) < 𝒫∗(𝑣3𝑣4) < ⋯ < 𝒫∗(𝑣2𝑛−1𝑣2𝑛) 

𝒫∗(𝑒1) < 𝒫∗(𝑒2) < ⋯ < 𝒫∗(𝑒𝑛) 

Thus 𝒫∗  is injective in 𝐸5. 

Hence all the edge labelings in 𝐸5 are distinct. 

Claim 6: 𝒫∗  is in injective in 𝐸1 and 𝐸2. 

Let us consider any two edges 

𝑒1 = 𝑣5𝑣7, 𝑒2 = 𝑣8𝑣10 where 𝑒1 ∈  𝐸1, 𝑒2 ∈  𝐸2 

It is visible that  

𝒫(𝑣5) < 𝒫(𝑣7) < 𝒫(𝑣8) < 𝒫(𝑣10) 

     ⟹ [𝒫(𝑣5)]3 < [𝒫(𝑣7)]3 <        [𝒫(𝑣8)]3[𝒫(𝑣10)]3 

Hence 

  |[𝒫(𝑣5)]3 − [𝒫(𝑣7)]3| < |[𝒫(𝑣8)]3 − [𝒫(𝑣10)]3| 

𝒫∗(𝑣5𝑣7) < 𝒫∗(𝑣8𝑣10) 

𝒫∗(𝑒1) < 𝒫∗(𝑒2) 

𝒫∗(𝑒1) ≠ 𝒫∗(𝑒2) 

Thus 𝒫∗  is injective in 𝐸1  and 𝐸2 

Hence all the edge labelings in  𝐸1  and 𝐸2 are distinct. 

Claim 7:  𝒫∗  is in injective in 𝐸1 and 𝐸3. 

Let us consider any two edges 

𝑒1 = 𝑣2𝑣3, 𝑒2 = 𝑣5𝑣7 where 𝑒1 ∈  𝐸3, 𝑒2 ∈  𝐸1 

It is clear that  

       𝒫(𝑣2) < 𝒫(𝑣3) < 𝒫(𝑣5) < 𝒫(𝑣7) 

       ⟹ [𝒫(𝑣2)]3 < [𝒫(𝑣3)]3 < [𝒫(𝑣5)]3 < [𝒫(𝑣7)]3 

       Hence  

 |[𝒫(𝑣2)]3 − [𝒫(𝑣3)]3| < |[𝒫(𝑣5)]3 − [𝒫(𝑣7)]3| 

       𝒫∗(𝑣2𝑣3) < 𝒫∗(𝑣5𝑣7) 

𝒫∗(𝑒1) < 𝒫∗(𝑒2) 

𝒫∗(𝑒1) ≠ 𝒫∗(𝑒2) 

Thus 𝒫∗  is injective in 𝐸1  and 𝐸3 

Hence all the edge labelings in  𝐸1  and 𝐸3 are distinct. 

Claim 8: 𝒫∗  is in injective in 𝐸1 and 𝐸4. 

Let us consider any two edges 

𝑒1 = 𝑣7𝑣9, 𝑒2 = 𝑣2𝑣5 where 𝑒1 ∈  𝐸1, 𝑒2 ∈  𝐸4 

It is obvious that  

𝒫(𝑣2) < 𝒫(𝑣5) < 𝒫(𝑣7) < 𝒫(𝑣9) 

⟹ [𝒫(𝑣2)]3 < [𝒫(𝑣5)]3 < [𝒫(𝑣7)]3 < [𝒫(𝑣9)]3 

Hence   

|[𝒫(𝑣2)]3 − [𝒫(𝑣5)]3| < |[𝒫(𝑣7)]3 − [𝒫(𝑣9)]3| 

𝒫∗(𝑣2𝑣5) < 𝒫∗(𝑣7𝑣9) 

𝒫∗(𝑒2) < 𝒫∗(𝑒1) 

𝒫∗(𝑒1) ≠ 𝒫∗(𝑒2) 

Thus 𝒫∗  is injective in 𝐸1  and 𝐸4 

Hence all the edge labelings in  𝐸1  and 𝐸4 are distinct. 

Claim 9: 𝒫∗  is in injective in 𝐸1 and 𝐸5. 

Let us consider any two edges 

𝑒1 = 𝑣3𝑣4, 𝑒2 = 𝑣9𝑣11 where 𝑒1 ∈  𝐸5, 𝑒2 ∈  𝐸1 

It is visible that  

𝒫(𝑣3) < 𝒫(𝑣4) < 𝒫(𝑣9) < 𝒫(𝑣11) 

⟹ [𝒫(𝑣3)]3 < [𝒫(𝑣4)]3 < [𝒫(𝑣9)]3 < [𝒫(𝑣11)]3 

Hence  |[𝒫(𝑣3)]3 − [𝒫(𝑣4)]3| < |[𝒫(𝑣9)]3 −

[𝒫(𝑣11)]3| 

      𝒫∗(𝑣3𝑣4) < 𝒫∗(𝑣9𝑣11) 

𝒫∗(𝑒1) < 𝒫∗(𝑒2) 

𝒫∗(𝑒1) ≠ 𝒫∗(𝑒2) 

Thus 𝒫∗  is injective in 𝐸1  and 𝐸5 

Hence all the edge labelings in  𝐸1  and 𝐸5 are distinct. 

Claim 10:  𝒫∗  is in injective in 𝐸2 and 𝐸3. 

Let us consider any two edges 

𝑒1 = 𝑣4𝑣5, 𝑒2 = 𝑣8𝑣10 where 𝑒1 ∈  𝐸3, 𝑒2 ∈  𝐸2 

It is noticeable that  

𝒫(𝑣5) < 𝒫(𝑣5) < 𝒫(𝑣8) < 𝒫(𝑣10) 

⟹ [𝒫(𝑣4)]3 < [𝒫(𝑣5)]3 < [𝒫(𝑣8)]3 < [𝒫(𝑣10)]3 

Hence 

  |[𝒫(𝑣4)]3 − [𝒫(𝑣5)]3| <  |[𝒫(𝑣8)]3 − [𝒫(𝑣10)]3| 

𝒫∗(𝑣4𝑣5) < 𝒫∗(𝑣8𝑣10) 

      𝒫∗(𝑒1) < 𝒫∗(𝑒2) 

      𝒫∗(𝑒1) ≠ 𝒫∗(𝑒2) 

Thus 𝒫∗  is injective in 𝐸2  and 𝐸3 

Hence all the edge labelings in  𝐸2  and 𝐸3 are distinct. 

Claim 11:  𝒫∗  is in injective in 𝐸2 and 𝐸4. 

Let us consider any two edges 

𝑒1 = 𝑣2𝑣4, 𝑒2 = 𝑣8𝑣11 where 𝑒1 ∈  𝐸2, 𝑒2 ∈  𝐸4 
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It is evident that  

𝒫(𝑣2) < 𝒫(𝑣4) < 𝒫(𝑣8) < 𝒫(𝑣11) 

         ⟹ [𝒫(𝑣2)]3 < [𝒫(𝑣4)]3 < [𝒫(𝑣8)]3 < [𝒫(𝑣11)]3 

      Hence 

         |[𝒫(𝑣2)]3 − [𝒫(𝑣4)]3| < |[𝒫(𝑣8)]3 −

        [𝒫(𝑣11)]3| 

       𝒫∗(𝑣2𝑣4) < 𝒫∗(𝑣8𝑣11) 

       𝒫∗(𝑒1) < 𝒫∗(𝑒2) 

      𝒫∗(𝑒1) ≠ 𝒫∗(𝑒2) 

Thus 𝒫∗  is injective in 𝐸2  and 𝐸4 

Hence all the edge labelings in  𝐸2  and 𝐸4 are distinct. 

Claim 12:  𝒫∗  is in injective in 𝐸2 and 𝐸5. 

Let us consider any two edges 

𝑒1 = 𝑣2𝑣4, 𝑒2 = 𝑣9𝑣10 where 𝑒1 ∈  𝐸2, 𝑒2 ∈  𝐸5 

It is easily seen that  

𝒫(𝑣2) < 𝒫(𝑣4) < 𝒫(𝑣9) < 𝒫(𝑣10) 

      ⟹ [𝒫(𝑣2)]3 < [𝒫(𝑣4)]3 < [𝒫(𝑣9)]3 < [𝒫(𝑣10)]3 

Hence  

 |[𝒫(𝑣2)]3 − [𝒫(𝑣4)]3| < |[𝒫(𝑣9)]3 − [𝒫(𝑣10)]3| 

𝒫∗(𝑣2𝑣4) < 𝒫∗(𝑣9𝑣10) 

𝒫∗(𝑒1) < 𝒫∗(𝑒2) 

𝒫∗(𝑒1) ≠ 𝒫∗(𝑒2) 

Thus 𝒫∗  is injective in 𝐸2  and 𝐸5 

Hence all the edge labelings in  𝐸2  and 𝐸5 are distinct.  

Claim 13:  𝒫∗  is in injective in 𝐸3 and 𝐸4. 

Let us consider any two edges 

𝑒1 = 𝑣0𝑣1, 𝑒2 = 𝑣8𝑣11 where 𝑒1 ∈  𝐸3, 𝑒2 ∈  𝐸4 

It is evident that  

𝒫(𝑣0) < 𝒫(𝑣1) < 𝒫(𝑣8) < 𝒫(𝑣11) 

⟹ [𝒫(𝑣0)]3 < [𝒫(𝑣1)]3 < [𝒫(𝑣8)]3 < [𝒫(𝑣11)]3 

Hence  

 |[𝒫(𝑣0)]3 − [𝒫(𝑣1)]3| < |[𝒫(𝑣8)]3 − [𝒫(𝑣11)]3| 

𝒫∗(𝑣0𝑣1) < 𝒫∗(𝑣8𝑣11) 

𝒫∗(𝑒1) < 𝒫∗(𝑒2) 

      𝒫∗(𝑒1) ≠ 𝒫∗(𝑒2) 

Thus 𝒫∗  is injective in 𝐸3  and 𝐸4 

Hence all the edge labelings in  𝐸3  and 𝐸4 are distinct.  

Claim 14: 𝒫∗  is in injective in 𝐸3 and 𝐸5. 

Let us consider any two edges 

𝑒1 = 𝑣2𝑣3, 𝑒2 = 𝑣9𝑣10 where 𝑒1 ∈  𝐸3,                       𝑒2 ∈

 𝐸5 

It is obvious that  

𝒫(𝑣2) < 𝒫(𝑣3) < 𝒫(𝑣9) < 𝒫(𝑣10) 

⟹ [𝒫(𝑣2)]3 < [𝒫(𝑣3)]3 < [𝒫(𝑣9)]3 < [𝒫(𝑣10)]3 

Hence 

  |[𝒫(𝑣2)]3 − [𝒫(𝑣3)]3| < |[𝒫(𝑣9)]3 − [𝒫(𝑣10)]3| 

𝒫∗(𝑣2𝑣3) < 𝒫∗(𝑣9𝑣10) 

𝒫∗(𝑒1) < 𝒫∗(𝑒2) 

𝒫∗(𝑒1) ≠ 𝒫∗(𝑒2) 

Thus 𝒫∗  is injective in 𝐸3  and 𝐸5 

Hence all the edge labelings in  𝐸3  and 𝐸5 are distinct. 

Claim 15:  𝒫∗  is  injective in 𝐸4 and 𝐸5. 

Let us consider any two edges 

𝑒1 = 𝑣3𝑣4, 𝑒2 = 𝑣8𝑣11 where 𝑒1 ∈  𝐸5, 𝑒2 ∈  𝐸4 

It is noticeable that  

𝒫(𝑣3) < 𝒫(𝑣4) < 𝒫(𝑣8) < 𝒫(𝑣11) 

⟹ [𝒫(𝑣3)]3 < [𝒫(𝑣4)]3 < [𝒫(𝑣8)]3 < [𝒫(𝑣11)]3 

Hence 

  |[𝒫(𝑣3)]3 − [𝒫(𝑣4)]3| < |[𝒫(𝑣8)]3 − [𝒫(𝑣11)]3| 

𝒫∗(𝑣3𝑣4) < 𝒫∗(𝑣8𝑣11) 

𝒫∗(𝑒1) < 𝒫∗(𝑒2) 

𝒫∗(𝑒1) ≠ 𝒫∗(𝑒2) 

Thus 𝒫∗  is injective in 𝐸4  and 𝐸5 

Hence all the edge labelings in  𝐸4  and 𝐸5 are distinct. 

Thus 𝒫∗ is injective in E. 

Hence the extended grid 𝐸𝑀(1, 𝑛) admits cube 

difference labeling, for . 

 

Figure. 1 cube difference labeling of the extended grid 

𝐸𝑀(1,5) 

 

Figure. 2 cube difference labeling of the extended grid 

𝐸𝑀(1,4) 

1. Conclusion 

2n 
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 In this paper we prove the admittance of cube difference 

labeling of an extended grid 𝐸𝑀(1, 𝑛)  for . Many 

graphs may admit cube difference labeling  . An 

investigation to identify such graphs will be considered 

as future work. 
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