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ABSTRACT: Large volumes of mostly irreparable electronic waste (e-waste) are shipped to 

Africa on a monthly basis, of which Nigeria receives the largest share. E-waste management 

practices in Nigeria have remained completely primitive until date; and e-waste workers have little 

or no occupational safety knowledge and devices. The thousands of chemicals in e-waste have 

been reported to be toxic to human health in any degree of exposure. The present study has 

assessed the risk of liver damage in workers occupationally exposed to e-waste in Benin City, 

South-south Nigeria in 2014. Serum activities of liver enzymes [alanine aminotransferase (ALT), 

aspartate aminotransferase (AST), gamma glutamyltransferase (GGT) and alkaline phosphatase 

(ALP)]; and levels albumin (ALB), total bilirubin (T/Bil) and conjugated bilirubin (C/Bil) were 

determined using standard colorimetric methods. Serum Alpha fetoprotein (AFP) was determined 

using ELISA in Nigerian e-waste workers (n=63) and in age-matched unexposed participants 

(n=41) in Benin City. The results showed significantly raised activities of enzymatic biomarkers of 

liver damage (ALT, AST, ALP and GGT) in the e-waste group compared with the unexposed 

participants. There was no significant difference in the levels of ALB, T/Bil and C/Bil between 

exposed and unexposed participants. AFP levels in e-waste workers (3.56 ± 0.34 ng/mL) were 
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significantly different compared with the unexposed group (2.14 ± 0.80 ng/mL) (P< 0.045). The 

significantly elevated cancer risk biomarker (AFP) and the enzymatic biomarkers of liver damage 

observed in the Nigerian e-waste workers studied may be associated with occupational exposure to 

known carcinogens and hepatotoxic metals in e-waste.  
 

INTRODUCTION 

The invention of electricity has revolutionized 

technology in the recent years and advancement in 

technologies have led to the invention and 

manufacturing of many electrical and electronic 

equipment. Rapid economic growth, coupled with 

urbanization and a growing demand for consumer goods 

has led to increased production of electronics [1].  

Large volumes of electrical and electronic equipment 

with most of its components toxic and non-

biodegradable are made with short life span hence 

discarded as waste, thus making e-waste the fastest 

growing waste stream globally [2].  

Africa as a continent has been battling with 

environmental challenges especially issues of chemicals 

and wastes, which are on the ascendancy with 

crosscutting impacts. The magnitudes of which are yet 

to be fully assessed and recognized, bearing in mind the 

connection between waste, climate change and human 

health [3]. 

Electronic waste (e-waste), e-scrap, or waste electrical 

and electronic equipment (WEEE) describes discarded 

electrical or electronic devices. This includes items such 

as obsolete personal computers (PCs), laptops, 

television, monitors, refrigerators, fax machines, cell 

phones, batteries and consumer electronics among 

others [3]. Electronics, which are destined for, reuse, 

resale, salvage, recycling, or disposal may also be term 

e-waste [4]. 

The primitive processing of electronic waste in 

developing countries may lead to remarkable health and 

pollution problems [4]. E-waste contains over 1,000 

chemicals, including polychlorinated biphenyls, 

tetrabromo-bisphenol-A, chlorofluorocarbons,  

 

 

polyvinylchloride, phthalates and its derivatives, 

dioxins, furans and potential toxic metals such as lead, 

cadmium, chromium, mercury, copper, manganese, 

nickel, arsenic, zinc, iron and aluminium [5]. 

Greenpeace, a global Environmental Protection Agency 

in a publication highlighted that e-wastes contain such 

health-threatening substances as mercury, lead, arsenic, 

cadmium, berylium, hexavalent chromium, bromated 

flame retardants (BFRs), polyvinyl chloride (PVC); as 

well as phthalates (phthalate esters) and Organotins 

[6,7]. Some of these substances are known potential 

hepatotoxicants [6, 8]. 

In Sub-Saharan African countries, the trade of e-waste 

has been declared hazardous and illegal based on the 

provisions of the Bamako Convention, notwithstanding, 

it has continued to grow remarkably in Nigeria. 

Although Nigeria ratified the Basel Convention on May 

24, 2004, it still has not ratified the Bamako 

Convention, and the country remains a dumping ground 

for e-waste from European and Asian markets [9, 10]. It 

is reported that about 500 containers of second-hand 

electronics are imported to Nigeria on a monthly basis 

from Europe, and each is estimated to contain about 500 

computers, of which about three-quarters are often 

verified to be junk and non-reusable[11, 12]. 

Expectedly, this non-reusable WEEE is dumped in 

domestic landfills. 

Humans can become exposed to toxic metals in dust 

through several routes, which include ingestion, 

inhalation, and dermal absorption [13-15]. In dusty 

environments, adults could ingest about 100 mg 

dust/day [14, 17, and 18]. Exposure to high levels of 

toxic metals can result in acute and chronic toxicity, 

such as injury to the human brain and nervous system 



O. G. Igharo et al. / Journal of Chemical Health Risks 5(3) (2015) 155–166 

2 
 

[18]; distress the kidneys [19-21], birth defects [22, 23] 

and even death. The Minamata disease in Japan between 

1954 and 1965; the Love Canal incident, near Niagara 

Falls in the US; the Koko incident of 1988 in Nigeria; 

the Zamfara lead poisoning in Nigeria; the Thor 

Chemicals diseases of the early 1990s in South Africa; 

the disastrous dumping of hazardous wastes incident in 

Ivory Coast, in 2006, are among the numerous pointers 

to the grave consequences that unscrupulous waste 

dumping could have on human beings, jeopardizing 

their livelihood, liberty and very existence. 

With the unregulated heavy inflow of e-waste into 

Nigeria, the risk factors and occupational lifestyle of e-

waste workers, coupled with other widespread health-

threatening pollutions, the development of 

hepatocellular disorders is not impossible. There is a 

remarkable association between toxic metals and liver 

parenchymal cell damage; some metals being known to 

be potential hepatotoxicants [8]. 

Liver dysfunction or necrosis has been reported to be 

associated with overload of toxic metals, drugs and 

other xenobiotics [24]. The theory of hepatotoxicity 

centers on the central role played by the liver in 

biotransformation and disposition of xenobiotics [25-

27]. Injury to the parenchymal cells of the liver may 

arise from oxidative stress due to interaction with toxic 

metals. Cadmium, lead and arsenic are known to 

generate reactive oxygen species such as O2
,
 H2O2 and 

∙
OH that cause oxidative stress [28, 29]. Iron and copper 

may be replaced by cadmium from a number of 

cytoplasmic and membrane proteins like ferritin. This 

may lead to increase in the concentration of iron and 

copper ions, thereby initiating oxidative stress through 

Fenton reaction [30]. 

Oxidative stress generated by these toxic metals may 

cause increased generation of reactive oxygen species, 

which in turn causes lipid peroxidation of important 

biomembranes. These species may interact with 

biological macromolecules and lead to DNA damage as 

well as its hypo- or hyper-methylation. In the overall 

consideration, there may be alterations in regulatory 

mechanisms of cell proliferation and eventually cell 

death [31]. Toxic metals such as lead and cadmium 

displace trace element in antioxidant enzymes and vital 

biomolecules and disrupt their activities [32]. For 

instance, zinc in superoxide dismutase, selenium in 

glutathione peroxidase is replaced by lead thereby 

deactivating them and depleting the glutathione store, 

hence an increased chances of lipid peroxidation 

through oxidative stress on biomembranes [33, 34]. 

Hepatic cellular dysfunction and death initiate 

immunological reaction that triggers off signals, which 

activates the kupffer cells and natural killer cells. These 

cells release proinflamatory mediators such as 

interkeukins, interferon-gamma and tissue necrotic 

factors. These cytokines attract more inflammatory cells 

causing injury to the liver [35]. 

Based on the theory of metal induced hepatotoxicity, the 

present study aimed at assessing the risk of liver damage 

in Nigerians occupationally exposed to toxic metals in 

e-waste. 

 

MATERIALS AND METHODS 

Study Design 

This research was designed as a comparative study 

between occupationally exposed and non-exposed 

subjects. 

Study Area 

This study was carried out in the Metropolitan City of 

Benin, Edo State formerly Mid-western but now South-

south Nigeria in 2014. Benin City is the current capital 

of Edo State with an estimated average population of 

1,147,188 in the 2006 general census.  
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Study Population 

Exposed Subjects 

Male Waste Electric and Electronic Equipment (WEEE) 

Workers (n =63, Mean age of 31 years) working and 

living in Benin City, formed the exposed group. The 

states of origin of the exposed subjects comprised of 

Edo, n=32 (50.8%); Imo, n=15 (23.8%); Delta, n=7 

(11.1%); Anambra, n=3 (4.8%); Ekiti, n=2; (3.2%); 

Enugu, n=2 (3.2%) and Abia, n=2 (3.2%). Only subjects 

with a minimum of 5 years of occupational exposure to 

toxic substances in WEEE were enrolled into the study. 

Unexposed Subjects 

Age-matched apparently healthy male participants (n = 

41), with minimal or no occupational exposure to toxic 

substances in WEEE, recruited from the Ugbowo 

Campus Community of the University of Benin formed 

the unexposed group in this study. 

Inclusion Criteria 

a) Exposed subjects comprised of Electronic 

Technicians carrying out informal (primitive) 

e-waste recycling, processing, repair and 

dismantling repair of electronic and electrical 

equipment. Subjects who were occupationally 

exposed to e-waste for a period of five years 

and above at the time of sample collection 

were considered suitable for the study. 

Five years duration of exposure is based on Electronic 

Waste Risk Assessment Report of Adaramodu [36]. 

b) Control subjects were apparently healthy male 

individuals with minimal or no occupational 

exposure and with no hobby involving e-waste 

exposure. The unexposed participants had no 

previous demographic and medical history of 

incidence of cancer. 

 

 

Exclusion Criteria 

E-waste workers who were not exposed to e-waste for a 

period up to five years at the time of sample collection 

were not considered suitable for the study. Subject with 

history of any form of cancer, tobacco smoking and 

alcoholism were excluded from the study. Tobacco 

smoking and alcohol consumption also served as basis 

of exclusion in the recruitment of the apparently healthy 

control subjects. 

Ethical Approval 

The protocol for this study was approved by the Health 

Research Ethics Committee of University of 

Ibadan/University College Hospital, Ibadan, Nigeria 

(UI/UCH EC Registration Number: 

NHREC/05/01/2008a) 

Informed Consent 

Subjects for this study were adults who were adequately 

briefed on the research protocol and informed consent 

was obtained prior to sample collection. The informed 

consent form contents were explicitly explained to the 

participants in English and in their local dialect. 

Sample Collection 

Approximately 5 ml of venous blood was collected from 

test subjects (e-waste workers) and control subjects 

using standard phlebotomy techniques. Blood samples 

obtained were dispensed into plain (anticoagulant-free) 

specimen bottles to obtain serum after clotting and 

centrifugation at 3000 revolution per minute for 3 

minutes. Analysis of samples for the generation of 

research data was carried out using the well-preserved 

and labeled samples. 

Laboratory Analysis 

The serum activities of the liver enzymes (ALT, AST 

and ALP) were estimated using a well calibrated 
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Reflotron chemical analyzer, which applies reflectance 

photometry principle in its operation. Gamma-glutamyl 

transferase was estimated using diagnostic kits 

manufactured by Randox Labs, United Kingdom, based 

on the colorimetric method described by Szasz [37]. 

Serum albumin concentration was determined using 

Bromocresol Green method. Total and conjugated 

bilirubin levels were determined using diagnostic kits 

manufactured by Randox Labs, United Kingdom, based 

on the colorimetric method described by Jendrassick and 

Grof, [38]. Concentrations of Alpha-fetoprotein in the 

samples were estimated by ELISA [39, 40]. 

All biochemical assays were carried out in the Clinical 

Chemistry laboratory of the Department of Medical 

Laboratory Science, University of Benin, Benin City. 

STATISTICAL ANALYSIS 

Statistical analyses including descriptive statistics were 

carried out using the Statistical Package for Social 

 

Scientists (SPSS) version 16.0 (Chicago, IL, USA). All 

values were expressed as Mean ± Standard Error of the 

Mean. The Independent Student’s t-test was used to 

determine significant differences between exposed and 

unexposed groups and P value < 0.05 was accepted. 

RESULTS 

Enzymatic biomarkers (ALT, AST, ALP and GGT) of 

liver damage in Nigerian e-waste workers and 

unexposed participants are shown in Table 1. 

The levels of (ALT, AST, ALP and GGT) in e-waste 

workers were significantly different from the unexposed 

group. 

The biosynthetic function and biotransformation 

function of the liver as indicated by serum albumin, total 

bilirubin and conjugated bilirubin are presented in Table 

2. As indicated, levels of serum albumin, total bilirubin 

and conjugated bilirubin between the exposed and 

unexposed participants showed no significant difference 

(P> 0.05). 

 

Table 1 Enzymatic Biomarkers of liver Damage in e-waste exposed and unexposed participants 

Variables 
Exposed Participants 

(n=63) 

Unexposed Participants 

(n=41) 
Degree of Freedom P value Level of significance 

ALT (U/L) 24.39  1.30 18.05  1.24 101 <0.01 Highly significant 

AST (U/L) 37.36  1.42 23.54  1.34 101 <0.001 Highly significant 

ALT (U/L) 82.84  2.47 82.84  2.47 101 <0.001 Highly significant 

GGT (U/L) 0.05  0.01 0.02  0.00 71 0.019 Significant 

De Ritis Ratio 

(AST/ALT) 

1.531 

Ratio= 1.2 

1.304    

Note: Values in Mean  Standard Error of the Mean 

 

Table 2. Assessment of Biosynthetic and Biotransformation Function of the Liver in e-waste exposed and unexposed group 

Variables (mg/dL) Exposed subjects(n=63) Unexposed subjects (n=40) Level of significance 

Albumin 4.760.03 4.860.06 Not significant 

Total Bilirubin 0.610.04 0.530.07 Not significant 

Conjugated bilirubin 0.36 0.03 0.310.03 Not significant 

Unconjugated bilirubin 0.250.02 0.330.05 Not significant 

                   Note: Values in Mean  Standard Error of the Mean 
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DISCUSSION 

Enzyme markers are better indicators of the status of an 

organ. The liver enzymes (e.g. alanine transaminase, 

aspartate transaminase, alkaline phosphatase and 

gamma-glutamyl transferase) have very low serum 

concentration [41, 42]. The alanine aminotransferase 

(EC2.6.1.2) is found primarily in the liver with trace 

amount in skeletal muscles and heart. It is found in the 

cytoplasm and mitochondria where it is involved in 

protein metabolism. It leaks out of damaged tissues in 

hepatocellular necrosis [43, 44]. AST (EC2.6.1.1) is an 

enzyme found in both mitochondrial and cytoplasmic 

compartments of the cell. The reductive transfer of an 

amino group from aspartate to α-ketoglutarate resulting 

in the yield of oxaloacetate and glutamate is catalyzed 

by AST. It also leaks out into the serum during 

hepatocellular necrosis [45, 46]). ALP (EC3.1.3.1) and 

γ-GT (2.3.2.2) are membrane bound glycoprotein 

enzymes. Their elevated plasma concentration is due to  

hepatobiliary injury and cholestasis [27, 47, 48, and 49]. 

In the event of damage to the parenchymal cells of the 

liver, these enzymes leak from the intracellular 

compartments into the serum resulting in elevated serum 

concentrations. Some investigations [50-53], showed 

that toxic metals (including cadmium, mercury, arsenic 

and others) are hepatotoxic. Arsenite intoxication of rat 

induced hepatocyte membrane damage causing leakage  

of ALT, AST and ALP into circulation as well as 

causing focal necrosis in the liver [54]. 

The present study has shown a marked elevation of 

serum concentration of these enzymes in the exposed 

subjects compared to the non-exposed subjects which 

are statistically significant at P<0.05. This may have  

resulted from interaction of toxic metals with the 

parenchymal cells of the liver, which may have resulted 

in necrosis. This is in consonance with the work of Lee 

et al. [55], Mahour and Saxena [56] where marked 

elevation of serum activities of liver enzymes were  

 

observed in rats intoxicated with toxic metals. Elevation 

of serum activities of liver enzymes was also observed 

by Jagadeesan and SankarsamiPillai, [57] in albino rats 

intoxicated with HgCl2. 

Hepatic functions, biosynthetic ability and integrity of 

hepatocytes are affected by the deleterious effects of 

toxic metals. In liver disorders, total protein and 

albumin are observed to decrease due to reduced 

number of hepatocytes and impaired function [57-59]. 

In liver cirrhosis, all liver synthesized proteins decrease 

while globulin increases due to imposed kupffer cell 

function and acute phase protein production. 

 However, the liver has significant reserve capacity to 

maintain protein concentration. This can only fall in 

extensive liver damage. Many liver proteins have long 

half-life. For instance, albumin has a half-life of three 

weeks. The rate of decreased protein synthesis in the 

liver depends on the type, severity and duration of liver 

injury. In acute hepatic dysfunction, there is little or no 

change in the total plasma protein concentration [60]. 

This study has shown that the serum concentration of 

albumin in Nigerians occupationally exposed to e-waste 

has been reduced compared with unexposed group, the 

difference was however not significant. 

This may be because hepatocytes, which synthesize 

these proteins, have a minimal turn over and a lifespan 

of about one year [61]. The liver can loss its function 

only when a larger portion has been destroyed or 

removed. For instance, in liver transplant, liver failure 

occurs when about 20-25% is left and fails to regenerate 

[62-64], observed that liver has the ability to regenerate 

itself after an assault or surgical removal of its part. This 

stimulated hepatocytes proliferation leads to the gradual 

restoration of the liver mass through a process of 

compensatory hyperplasia. The regeneration of liver 

cells from its oval (progenitor) cells could be a reason 

for the undetected reduction in the biosynthetic function 
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of the liver [65, 66, and 67]. In addition, the liver 

increases the production of positive acute phase proteins 

than negative acute phase proteins during inflammation 

of its cells [68]. 

The liver also conjugates indirect bilirubin from 

erythrocytes destruction in the reticulo-endothelial 

system. Bilirubin is transported to the liver bound to 

albumin. It is taken up by the hepatocytes, which 

conjugate them to bilirubin diglucuronide by the action 

of uridyl diphosphate glucuronyltransferase enzyme. 

This enables the renal excretion of bilirubin. Injury to 

the hepatocytes results in increased total bilirubin. 

Diseases and assaults on the hepatocytes may reduce the 

conjugating function of the liver. More so, any 

obstruction to the bile canaliculi can as well cause an 

increase in serum bilirubin. 

Venkatesan and Sadiq observed an elevated serum 

bilirubin in rats exposed to mercury intoxication [69]. In 

another study, using animal model, Mohamed et al., [70] 

observed an increased serum level of total bilirubin 

because of mercury intoxication. Cadmium caused an 

elevated bilirubin level along with ALT, AST, ALP and 

γ-GT [71]. 

However, in this study, the mean values for Total 

bilirubin (TB) and Conjugated bilirubin (CB) were 

slightly higher (not significantly different) in exposed 

subjects compared with unexposed subjects. Increase in 

both TB and CB in the exposed subjects may be because 

of haemolytic processes, which may be secondary to 

erythrocyte membrane lipid peroxidation. It has been 

reported that some metals such as gold, mercury, copper 

and lead (part of WEEE) cause lipid peroxidation [71, 

72]. Increased release of haemoglobin from haemolysis 

of erythrocytes explains the higher values of the two 

forms of bilirubin in the exposed subjects.  

The insignificant differences observed in the serum 

albumin, total bilirubin as well as conjugated bilirubin in 

the exposed participant studied compared with the non-

exposed is an indication that the biosynthetic capacity 

and biotransformation function of the liver of Nigerians 

occupationally exposed to e-waste was not or has not 

been affected. However, the marked elevation of serum 

activities of liver enzymes is an indication that the liver 

may be undergoing necrosis because of interaction of 

the liver cells with toxic metals in waste electrical and 

electronic waste.  

De Rittis ratio (1.2) obtained revealed that the damage 

to the liver was not a result of alcoholism. This 

observation is supported by the work of Moussavian et 

al. [73] on influence of alcohol ingestion and liver 

disease. They established that an AST to ALT ratio of 

2:1 or greater is suggestive of alcoholic liver disease, 

particularly in the setting of an elevated gamma-

glutamyltransferase.  

AFP value (3.56± 0.34ng/mL) in e-waste exposed group 

was within the reference range of (3.04 ± 1.9ng/mL) in 

healthy population. Howbeit, this value was 

significantly higher than the mean AFP levels in the 

unexposed group (2.14± 0.38ng/mL).  

Previous report demonstrated histopathological changes 

in liver of fish exposed to a wide range of heavy metals 

[75]. The value of testing for alpha-fetoprotein (AFP) 

for the diagnosis of primary hepatocellular carcinoma is 

well established [74, 75]. The body has limited capacity 

to respond to cadmium exposure, as the metal cannot 

undergo metabolic degradation to less toxic species and 

it is only poorly excreted, making long term storage 

(especially in the liver) a viable option for dealing with 

this toxic element [73]. The increased AFP level in the 

exposed subjects of this study may be associated with 

the promotion of oxidative stress by liver-stored heavy 

metals, of which cadmium is a culprit being reportedly 

stored in the liver [73]. The oxidative stress stimulated 

in the liver by the accumulated heavy metals may cause 

DNA damage, which may exacerbate cellular 

proliferation in the liver. The increased level of AFP 

may be attributed to this cellular proliferation.  
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In addition, AFP reactivation in adults may result from 

liver regeneration, noncancerous liver diseases such as 

viral hepatitis or cirrhosis, primary liver or germ cell 

tumors and to lesser extent several forms of other 

epithelial malignances [76]. The liver has regenerative 

ability; destruction of hepatocytes in heavy metal 

toxicity by oxidative stress will lead to stimulation of 

regeneration of hepatocytes, which will consequently 

lead to increase in AFP as the expression of AFP gene is 

increased during growth, and regeneration of the liver 

cells. This may have accounted for the higher AFP 

values obtained in the e-waste group. 

 In addition, AFP has been localized in the cytoplasm of 

hepatocytes, thus increased destruction of hepatocytes in 

heavy metal toxicity will reflect an increased level of 

serum AFP [76].  

Thus, the rising AFP levels in the exposed participants 

of this study may be associated with the pathobiology of 

metal-induced hepatotoxicity in chronic occupational 

exposure. 

CONCLUSIONS 

Significantly elevated cancer risk biomarker (AFP) and 

the enzymatic biomarkers of liver damage observed in 

the Nigerian e-waste workers studied may be associated 

with long-term occupational exposure to known 

carcinogens and hepatotoxic metals in e-waste. A trend 

towards hepatocellular damage in the e-waste exposed 

workers appears to be indicated. Use of personal 

protective devices and monitoring the status of AFP and 

liver enzymes in Nigerian e-waste workers would be 

immensely useful in evaluating exposure risk.  
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