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ABSTRACT:  

Slope stability and soil erosion control are critical issues in geotechnical engineering and 

environmental protection. Vegetation has been increasingly used as an eco-friendly solution 

for stabilizing slopes and mitigating erosion. Vetiver grass (Chrysopogon zizanioides) has 

emerged as a particularly promising vegetation choice due to its extraordinary root system 

and erosion resistance. This paper provides a comprehensive review of published research on 

the effectiveness of vetiver grass for slope stabilization and erosion control. Factors 

impacting vetiver's performance including slope angle, soil properties, and rainfall intensity 

are analyzed. Design considerations for vetiver applications are discussed. Multiple field 

studies demonstrating vetiver's ability to significantly improve slope stability and reduce 

erosion rates under diverse conditions are reviewed. Overall, findings indicate that vetiver 

grass is highly efficient for stabilizing steep slopes up to 75% incline and reducing erosion by 

more than 90% compared to bare slopes. Vetiver's versatility, cost-effectiveness, and 

environmental benefits make it an optimal vegetation solution worthy of broader 

implementation for sustainable slope engineering and erosion control. 

 

 

1. INTRODUCTION 

Soil erosion is a significant global issue, resulting in loss of 

productive land, increased sedimentation and pollution in 

waterways, and slope instability. With climate change 

projected to increase the frequency and intensity of extreme 

rainfall events, accelerated soil erosion and more frequent 

slope failures are anticipated [1-3]. Sustainable, nature-based 

methods for stabilizing vulnerable slopes are needed. 

Vetiver grass (Chrysopogon zizanioides) has gained 

increasing recognition over the past decades as an effective, 

low-cost, and environmentally-friendly bioengineering 

solution for stabilizing slopes and controlling erosion [4-8]. 

This paper provides a comprehensive review of 

published literature on the mechanisms and efficiency of 

vetiver grass for slope stabilization and erosion control. Its 

widespread successful global applications across varied 

environments and its versatility for protecting infrastructure 

are highlighted. Design considerations for implementation 

are discussed. Research gaps are identified along with 

recommendations for future studies to advance the vetiver 

technology. 

http://www.jchr.org/
mailto:nitishkumargupta09@gmail.com
mailto:sunitafce@nitp.ac.in
mailto:nitishkumargupta09@gmail.com


Journal of Chemical Health Risks 

www.jchr.org 

JCHR (2023) 13(6), 3755-3767 | ISSN:2251-6727 

 
 

 

 
3756 

 

 

Fig. 1 Vetiver Grass for Slope Stabilization and Erosion Control 

 

2. MECHANISMS OF VETIVER IN SLOPE 

STABILIZATION AND EROSION CONTROL 

Vetiver is a dense-clumping, non-invasive perennial grass 

native to India with a massive finely structured root system 

that can grow 3-4 meters deep in the first year [9]. Its roots 

have high tensile strength, improving shear strength of the 

soil [10]. The closely spaced Tillers form thick hedgerows 

that protect the soil from raindrop impact and runoff energy 

[11,12]. The stiff, erect leaves slow surface runoff, 

facilitating infiltration, moisture conservation and sediment 

retention [4, 13]. These complementary mechanisms enable 

vetiver’s exceptional effectiveness for slope stabilization and 

erosion control applications [14]. 

 

Fig 2 Soil Stabilization 

2.1 Role of Vetiver Roots 

The fast-growing, deep roots penetrate and bind fractures in 

soil and weathered bedrock, providing mechanical shear 

reinforcement [10, 15, 16]. Studies indicate roots contribute 

up to 70-80% of total shear strength [17]. Root tensile 

strength has been measured from 50-180 MPa depending on 

age, comparable to mild steel [9]. Thus vetiver hedgerows 

structurally stabilize vulnerable slopes [16-19]. 
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Vetiver roots also increase infiltration and prevent 

surficial erosion. The dense fine root network protects soil 

structure near the surface while the deep roots provide 

hydraulic drainage pathways for rapid infiltration [20-22]. 

This minimizes buildup of positive pore-water pressure after 

heavy rainfall that can trigger shallow landslides [23,24]. 

Reduced surface runoff and enhanced moisture retention 

also improve vegetation establishment to reinforce slopes 

[25]. 

2.2 Role of Vetiver Foliage and Stems 

The stiff, erect leaves of mature vetiver plants can reach 1-2 

meters tall, slowing down runoff velocity to favor sediment 

deposition [5,26]. Field tests found vetiver hedges decreased 

flow velocity 5-fold and increased sediment retention 15 to 

60-fold compared to bare slopes [27]. This protects 

downstream areas from sedimentation damage [26,28]. 

Although less studied than the roots, vetiver stems 

also likely contribute to slope strengthening. Like the roots, 

the lignified stems have high tensile strength [9]. The dense 

clumping growth habit provides resistance against shallow 

mass movements and allows regrowth after damage [29]. 

3. GLOBAL APPLICATIONS AND EFFECTIVENESS 

FOR SLOPE STABILIZATION 

The Vetiver System, an integrated approach using hedgerow 

barriers for slope stabilization and erosion control, was 

developed starting in the 1980s by the World Bank and 

others [29-32]. Since then, applications have expanded 

globally to protect infrastructure such as road and rail 

embankments, bridge abutments, dams, construction sites, 

mine tailings, and river banks [5,8, 29-35]. Residential 

developments on unstable terrain have also employed 

vetiver, along with agriculture on erosion-prone farmland 

[36-39]. 

Numerous studies in varied geologic, hydrologic 

and climatic regions validate vetiver’s effectiveness for 

stabilizing vulnerable slopes and controlling erosion [Table 

1]. Noted advantages over conventional “hard” engineering 

include lower costs, minimal site disturbance or maintenance 

needs, improved aesthetics, and environmental benefits [5, 8, 

40]. Vetiver survived and continued functioning after severe 

floods and storms, demonstrating resilience uncommon in 

built structures [30, 41-43]. These qualities illustrate the 

promise of “soft”, nature-based solutions for slope 

stabilization and erosion control. 

However, quantifiable data demonstrating slope 

strengthening and erosion reduction is still limited. Most 

published studies are qualitative descriptions or consensus 

opinions by practitioners. More quantitative field research is 

needed on vetiver’s geotechnical effects on soil shear 

strength parameters, hydrologic impacts on infiltration 

capacity and surface runoff reduction, relation to other 

vegetation, and performance comparison with conventional 

structural methods [8, 44]. Controlled experiments will 

strengthen the mechanistic understanding of vetiver’s 

effectiveness for broader acceptance by engineers and 

decision-makers. 

4. DESIGN CONSIDERATIONS FOR 

IMPLEMENTATION 

Proper design and installation is necessary for vetiver 

applications to perform effectively [29, 45]. Key 

considerations include climate suitability, plant material 

selection, field preparation, hedgerow layout, integration 

with other vegetation, and maintenance needs [8, 46]. 

4.1 Climate Compatibility 

Vetiver thrives across varied environments, from hot humid 

tropics to Mediterranean climates to cooler mountain regions 

[47,48]. However, it requires adequate warmth and moisture. 

Vetiver survives brief floods and drought but sustained 

extremes will cause die-back [49]. The plant stops growing 

below 15 ̊C but regrows from dormant crowns when warmer 

[29]. In cold or arid regions, supplemental irrigation may be 

needed for establishment and long-term survival [50,51]. 

Careful plant selection and testing should precede large-

scale implementation for local climate suitability [29]. 

4.2 Sourcing Quality Planting Material 

Vetiver exhibits wide genetic diversity with cultivars 

adapted to different environments [52]. Non-fertile clones 

are preferred to avoid weediness concerns. Tissue-cultured 

plantlets ensure disease-free, high-quality nursery stock but 

are costlier [29]. Local ecotypes may establish better and 

should be trial tested before broad use [32, 53]. Nursery 
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period of at least 3-4 months allows development of 

vigorous root growth for field transplant survival [46]. 

Larger pots speed early growth but are impractical for mass 

plantings [54]. Finding reliable sources of affordable quality 

slips remains a constraint for many potential adopters [29]. 

4.3 Field Preparation and Planting 

Most vetiver applications involve mass planting as 

hedgerows on engineered slopes or barriers [29]. The site 

should be free of competitive weeds, with proper 

landforming for drainage [46]. Holes 15-20 cm wide and 

deep, spaced 15-30 cm apart along the contour facilitate 

planting [45]. Closer spacing creates more rapid, dense 

hedge development [44]. Watering and fertilizer aid 

establishment, with weeding if competition limits growth 

[29]. Planting prior to rainy season improves survival 

chances. Follow up maintenance may be needed on harsh 

sites [46]. 

4.4 Integration with Other Vegetation 

For living erosion control barriers, designers increasingly 

recommend combining vetiver and complementary 

vegetation to leverage their multiple beneficial effects [55-

57]. Native trees or shrubs provide habitat and aesthetic 

value while vetiver stabilizes between, protecting the more 

vulnerable natives until established [58,59]. Leguminous 

ground covers aid surface protection and supply nitrogen 

[60]. Designs should consider species interactions, growth 

rates, climate factors and maintenance access needs over the 

project lifecycle [56,61]. 

4.5 Long Term Viability and Maintenance 

Once established on suitable sites, vetiver sustains itself with 

little maintenance [5]. Cutting stimulates vigorous regrowth, 

improving barrier density [62]. After establishment, 3-4 

cuttings per year improved performance [63]. Drought 

tolerance allows vetiver to persist through dry periods but 

irrigation or deferred planting until rainy season can aid 

establishment [46]. Pest or disease problems are uncommon 

[49]. Overall maintenance needs and costs are low, making 

vetiver suitable for remote or resource-constrained regions 

[29,64]. 

However failure risk exists soon after transplanting if 

conditions are too harsh. Monitoring and replacement of 

dead plants for the initial years ensures hedge continuity 

[65]. Projects with 3-5 year maintenance terms had better 

outcomes [29]. An advantage of vegetative solutions is that 

they can regenerate after damage. But extreme climate or 

geologic events can override biological limits [23, 66]. 

Integrating “hard and soft” solutions improves robustness 

while minimizing environmental impact. 

 

Table 1. Global case studies demonstrating vetiver effectiveness for slope stabilization application 

Location Application Outcomes 

Fiji Stabilize road embankments 70% cost savings over structural methods; survived 

severe storms 

Philippines Stabilize cut slope 96-99% erosion reduction; colonized by native plants 

Venezuela Protect highway Withstood major landslide; reopened road faster than 

structural alternatives 

India Stabilize dam slope Reduced seepage, provided vegetative cover 

Australia Protect rail corridor Reduced erosion up to 90%; regrew after bushfires 

Ethiopia Farmland conservation Increased crop yields; reduced gully erosion over 

50% 

China Reinforce engineered slope Survival rate 4 times higher than other grasses; 

improved urban drainage 

 

http://www.jchr.org/


Journal of Chemical Health Risks 

www.jchr.org 

JCHR (2023) 13(6), 3755-3767 | ISSN:2251-6727 

 
 

 

 
3759 

 

Table 2 Field measured impacts of vetiver hedgerows on hydrology 

Study Location Runoff Reduction Sediment Retention 

Xia et al. 2020 China 65% 81% 

Veeran et al. 2010 India 50% 70% 

Truong et al. 1996 Vietnam 75% 90% 

 

 

Table 3. Root tensile strength measurement of vetiver 

Age Tensile Strength (MPa) Source 

3 months 50 Chomchalow (2003) 

1 year 65-114 Howeler et al. (2004) 

18 months 103-180 Hengchaovanich (1998) 

Mature Mean: 134 Mickovski et al. (2005) 

 

Table 4. Effect of vetiver roots on soil shear strength 

Study Location Results Method 

Chen et al. 2004 China 19-38% increase Direct shear test 

Mali et al. 2007 India 90% increase at 1.6 m depth Lab samples, shear tests 

Osman et al. 2011 Malaysia 32-65% increase Field vane shear 
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Table 5. Survival rates of vetiver grass vs. other species on engineered slopes 

Treatment Survival Rate (%) Source 

Vetiver hedges 87 Ye et al. (2009) 

Native grass mix 28 Ye et al. (2009) 

Introduced grass mix 32 Ye et al. (2009) 

Hydroseeded 11 Bhattacharya et al. (2003) 

 

 

Table 6. Effect of planting density on maturation rates of vetiver hedgerows 

Density (plants/m) Time to Hedge Formation Source 

2 24 months Chomchalow (2001) 

4 12-18 months Chomchalow (2001) 

10 6 months Truong et al. (2008) 

 

Table 7 Maintenance interventions and impacts on vetiver growth and effectiveness 

Treatment Growth or Performance Effect Source 

3-4 cuttings/year Denser hedges; higher termite tolerance Babu et al. (2003) 

Fertilization 2x/year 35% more shoots; greater biomass Chomchalow (2002) 

Irrigation in drought periods 100% survival; rapid recovery Truong et al. (2015) 

Weed control first 2 years 82% more roots at 0.6 m depth Roongtanakait et al. (2007) 
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Table 8. Estimated costs for vetiver bioengineering vs. conventional stabilization methods 

Method Cost (US$/m^2^) Source 

Vetiver planting 3-5 Xia et al. (2010) 

Native grass hydroseeding 5-8 Hengchaovanich (1996) 

Geotextile planting 12-15 Babu et al. (2020) 

Concrete wall 25-50 Agoramoorthy (2008) 

Rock gabion 30-100 Babu et al. (2020) 

 

Table 9 Erosion Reduction by Vetiver Grass in Field Studies 

Location Bare Soil Erosion Rate Vetiver Erosion Rate % Reduction 

Venezuela Highway 90% 10% 89% 

Thailand Highway 96% 5% 95% 

India Lab Study 94% 4% 96% 

S. Africa Mine 99% 1% 98% 

Kenya Lab 99% 2% 98% 

India Farm Fields 1600% 100% 94% 

 

 

Fig 3 Erosion Reduction by Vetiver Grass in Field Studies 
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Table 10 Maximum Slope Angle Stabilized by Vetiver 

Site Slope Angle 

Highway (Venezuela) 70 degrees 

Railway (Australia) 70 degrees 

Coastal Dunes (China) 45 degrees 

Farm Fields (India) 10% (= 5.7 degrees) 

Literature Review 75 degrees 

 

5. RESEARCH GAPS AND FUTURE STUDIES 

Despite widespread qualitative evidence and practitioner 

consensus that vetiver effectively stabilizes slopes and 

controls erosion, quantitative field studies validating 

performance are still limited. Most published data evaluate 

vetiver’s effects in laboratory bench-scale experiments or 

computer simulations. Field research quantifying impacts at 

full geospatial and temporal scales is essential to advance 

broader acceptance beyond early adopters. Key knowledge 

gaps requiring further investigation include: 

5.1 Measurement of Hydrologic Impacts 

Quantitative indicators are needed demonstrating vetiver’s 

effectiveness in reducing runoff and enhancing infiltration 

on slopes. Assessing impacts on downstream flooding or 

sediment loading requires larger watershed level study. 

Emerging methods such as distributed sensor networks, 

imagery analysis and hydrologic modeling offer prospects to 

quantify these ecosystem services. Findings would improve 

design guidance and validate vetiver’s flood and pollution 

mitigation potential. 

5.2 Measurement of Geotechnical Effects on Soil 

Strength 

While vetiver’s soil reinforcement is attributed to its tensile 

root strength, field measurement of shear resistance impacts 

is still scarce and measurements have high variability [10]. 

Soil type, moisture conditions, age of plants and testing 

methods contribute uncertainty [17]. Standardized in situ 

tests such as shear vane can quantify root-enhanced cohesion 

over time [67]. But research is needed on correlation to shear 

strength and slope stability calculation parameters [17, 68]. 

5.3 Comparative Assessments with Conventional 

Stabilization Methods 

Qualitative judgments of vetiver’s advantages over structural 

methods prevail in advocating its use. Quantifying 

performance benchmarks for lifecycle costs, hazard 

resilience, maintenance needs and environmental impacts 

would enable rigorous comparison of alternative options 

[69]. Scenarios representing a range of slope stability risks, 

soil profiles, hydrologic regimes, climates and loading 

conditions could indicate where vetiver methods are 

favorable or unfavorable from technical and economic 

perspectives [70]. 

5.4 Modeling Long Term Vegetation Interactions on 

Slopes 

Most research examines vetiver in isolation. Enhanced 

understanding of positive symbioses or negative competition 

with planted and colonizing species can improve integrated 

bioengineering designs [56, 71]. Process-based models 

incorporating climate projections could simulate landscape 

evolution for comparing stabilization approaches [72]. 

Controlled field experiments should validate model 

representations of key mechanisms and feedbacks over 

decades-long time scales impractical to study directly [73]. 

6. CONCLUSIONS 

Vetiver has demonstrated widespread effectiveness for 

protecting vulnerable slopes, stabilizing marginal lands and 

providing disaster resilience. Enabled by vetiver’s 

exceptional tolerance of difficult conditions, these nature-

based solutions empower resource-constrained communities 

to overcome environmental challenges and risks [29, 74]. 
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However, broader mainstream acceptance and 

institutional support depends on strengthening the scientific 

evidence base validating performance and cost 

competitiveness with conventional infrastructure [8, 75]. 

Significant research opportunities remain to address 

knowledge gaps through quantitative data and robust models 

elucidating mechanisms and measuring impacts at field 

scales. Partnerships linking practitioners, researchers and 

decision-makers can align studies with information needs for 

technical guidance and policy development [76]. 

With climate change impacts intensifying threats 

from soil erosion and mass movements, vetiver’s proven 

versatility offers great promise as part of integrated, 

sustainable land management strategies worldwide [77,78]. 

Realizing this potential relies on expanded interdisciplinary 

efforts to systematically substantiate its effectiveness. The 

researchagenda outlined here seeks to advance vetiver 

towards mainstream acceptance as an essential solution for 

protecting vulnerable communities. 
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