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ABSTRACT:  

Road infrastructure maintenance is critical for ensuring safety and efficiency in transportation 

systems. Developing robust road crack detection systems has gained significant attention in 

this context. This research paper proposes a methodology leveraging Convolutional Neural 

Networks (CNNs) for segmenting and classifying road cracks. The methodology involves 

several key steps, including acquiring a diverse dataset comprising images from various crack 

segmentation sources. Preprocessing techniques such as resizing, normalization, and data 

augmentation are applied to standardize and enhance the dataset. Subsequently, the dataset is 

split into training, validation, and testing sets to facilitate model training and evaluation. The 

segmentation phase utilizes a CNN model to generate probability maps, which are then 

thresholded to obtain binary masks indicating crack presence. Following segmentation, a 

classification step categorizes detected cracks into predefined classes, leveraging the 

hierarchical features learned during segmentation. The CNN model is fine-tuned for this task, 

optimizing parameters through backpropagation. Evaluating the model's performance on the 

testing set ensures its effectiveness in real-world scenarios. By integrating segmentation and 

classification tasks within a unified CNN framework, the proposed methodology achieves 

accurate and efficient road crack detection, contributing to enhanced infrastructure 

maintenance and safety. 

 

 

I. INTRODUCTION 

Nowadays, the population in India has numerous means 

of land transportation to move within urban centers and 

between towns. In both cases, to achieve effective 

communication between areas, roads and routes that are 

adequately equipped for the use of different means of 

transportation are usually required. An example of this type 

of element is found in roads. In fact, regarding this type of 

roads, in India alone, in 2018, there were approximately 5.8 

million kilometers of roads [1]. Can you imagine how many 

millions of kilometers of this urban element are found 

throughout the country? 

Once again, in the case of India, as in many areas of the 

rest of the world, the number of vehicles that cross under 

"normal" conditions (as long as there are no regulations that 

prevent circulation such as states of alarm or risk of 

environmental contamination) these urban elements is 

enormous. And according to the World Health 

Organization, in 2016, the number of legally registered 

vehicles in circulation throughout the world was more than 

310 million. With so many vehicles using the roads, if 

pavement conditions are not optimal, this could pose a risk 

to drivers and passengers. Specifically, the poor condition 

of the pavements has an effect on the acceleration and 

stability of vehicles. And as can be seen in the conclusions 
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of the study carried out by the authors of [2], the rate of 

traffic accidents is much higher in cases where the 

pavement is in poor condition. Furthermore, in the future, 

with the implementation of autonomous vehicles, the 

optimal condition of the roads will become very important 

to avoid unexpected accidents in the decision-making of 

these vehicles. 

Therefore, road maintenance is essential for safety, but 

in economic terms, the impact is also considerable. In 

general, road maintenance is a latent problem in India and 

worldwide because the economic resources available to 

countries to carry out maintenance are limited. Let us 

remember the question in the first paragraph of this section 

that referred to the number of kilometers of roads in the 

world. Can you imagine carrying out a visual inspection of 

so many stretches of road by one or different experts, 

classifying and noting each of the defects manually? This 

would be costly in time and economic terms. However, 

nothing could be further from reality, there are current 

studies that demonstrate that the acquisition of data (e.g., 

images of cracks) is carried out automatically, in many 

cases using specialized vehicles, incurring a cost of 

acquiring said vehicles. However, the important tasks of 

defect detection and classification remain in 99.6% of cases 

a manual task performed by people in many countries. 

Furthermore, the cost of maintenance does not fall only 

on visual inspection, but there are different types of defects, 

such as visco-plastic deformations that form, for example, 

potholes, cracks and surface wear, in which all of them have 

a repair treatment that is different as is its cost. Among all 

these types of defects, cracks have gained special interest 

from transportation agencies and researchers [3, 4, 5, 6], 

with cracks being longitudinal, transverse, and in the form 

of mesh or crocodile skin. (see an example of these types in 

Fig.1), the most common [7]. But what are the causes that 

cause them and their repair measures?: 

• Transverse Cracks: These cracks are perpendicular to 

the abscissa axis of the image (if we take the image as 

a spatial reference) and are usually caused by thermal 

changes [8], by landslides, the hardening of the binder 

as well as the reflections caused by other cracks under 

the surface of the asphalt. 

• Longitudinal Cracks: These cracks would be parallel to 

the x-axis of the image and may be caused by the 

fatigue of the asphalt due to continuous overloading by 

the vehicles that circulate on it [9], or a less dense area 

of the asphalt compound which is found at the joints 

between pavements. 

• Mesh-type Cracks: This type of cracks, also known as 

crocodile skin (due to its similarity in texture to the skin 

of this animal), are the effect of asphalt fatigue and an 

unstable base thereof [10]. This instability is caused 

when the lower layers of the asphalt cannot support the 

surface layers, which in turn are derived from 

inefficient drainage as well as the effect of extreme 

temperatures such as frost and freezing of the asphalt 

[11, 12]. In this type of cracks, parts of the pavement 

can be lost if they are not treated in time and would lead 

to potholes and a progressive deterioration of the 

asphalt surface. 

    

(a)    (b) 

    

(c)    (d) 

Fig. 1.Different types of road surface cracks; a) Healthy 

pavement without cracks, b) Transverse crack, c) 

Longitudinal crack, d) Mesh type crack 

Regarding the measures to carry out the repair of 

transverse and longitudinal cracks, two types are 

distinguished, when the cracks are not wide and when they 
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are. When the width of the crack is not excessive, the repair 

consists of sealing it to prevent the entry of moisture and 

external agents that continue to increase its size [13], 

leaving the asphalt without cracks. On the other hand, for 

cracks that are quite pronounced and wide, the solution is 

to replace the asphalt layer completely. Furthermore, in 

land detachment problems, the solution used has to take 

into account its topology and carry out a comprehensive 

repair of the entire area. In mesh-type cracks, due to their 

nature, the general solution is usually to replace the entire 

affected surface with a new layer of asphalt. 

In this context, computer vision [14, 15] together with 

machine learning techniques of artificial intelligence [16], 

can be a useful mechanism in the efficient collection of 

images of roads and its subsequent manipulation for 

classification into the different types of defects previously 

detailed. In reality, these disciplines have already been 

useful in other fields of civil engineering for the monitoring 

and inspection of structures [17], allowing the automation 

of tasks that required great effort and execution 

consumption. 

Motivated by the preceding description, this research 

paper aims to develop a normal convolutional neural 

network (CNN)-based automatic system for the detection 

and classification of road cracks. Specifically, the aim is to 

create a CNN-based system capable of image processing to 

extract relevant features of road defects, with a focus on 

cracks in pavements, implementing computer vision 

methods within the CNN framework to analyze and extract 

characteristics of pavement defects efficiently, ensuring 

optimization for hardware with limited computing 

resources for immediate use, and developing data reduction 

techniques within the CNN model to minimize data usage 

for defect analysis and classification. Additionally, the 

research aims to classify different types of road defects, 

particularly longitudinal, transverse, and mesh-type cracks, 

utilizing supervised learning algorithms for improved fault 

tolerance, generating classification models that are 

interpretable and executable on hardware devices with 

limited resources for real-world deployment, and 

investigating the utilization of metaclassifiers to enhance 

classification decisions and overall accuracy in defect 

classification. 

II. LITERATURE REVIEW 

A. Crack Segmentation 

Segmenting cracks is a complex process scrutinized by 

numerous scholars in the academic realm, who employ 

diverse image processing methodologies and occasionally 

integrate machine learning techniques. The primary aim is 

to delineate a clear demarcation between the pavement 

background and the damaged area. Typically, scholars 

operate on binary images where cracks constitute the focal 

points, often assigned a value of 1 (in 8-bit depth images, 

this equates to 255). The authors of [18] introduced a novel 

mechanism termed comp-potential crack exponents 

(PCrCs) to execute binary segmentation, particularly 

targeting transverse and longitudinal cracks. This method 

entails filtering intensity levels amidst the pavement and the 

cracks, systematically eliminating disconnected 

components. The remaining elements delineate the cracks, 

aided by a shape metric (SM) developed by the authors, 

thereby yielding a reduced rate of false positives compared 

to prevalent machine learning-based approaches. However, 

this method may struggle with highly complex crack 

patterns and may require significant computational 

resources for processing.  

Alternatively, the authors of [19] proposed a distinctive 

approach known as minimum path selection (MPS), 

predicated on the notion that the minimum path of a crack 

corresponds to the lowest cost function among all feasible 

paths within the image. This entails two phases: identifying 

significant pixels marking the onset and culmination of 

crack paths, and subsequently detecting all paths between 

these points, followed by post-processing to eliminate 

short, isolated paths indicative of image artifacts. While 

effective in many cases, this method may struggle with 

accurately identifying cracks in regions with high noise 

levels, leading to potential false negatives. 

Furthermore, the authors estimate crack width utilizing 

the intensity levels of neighboring pixels along the 

identified paths. Another innovative technique is presented 

by the authors of [20], who endeavor to develop a real-time 

crack detection system leveraging particle filtering, tailored 

for operation within the RGB color space. Through iterative 

iterations, the algorithm is adapted to track crack pixels, 

enabling the reconstruction of cracks and facilitating length 
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estimation. However, this method may face challenges in 

accurately distinguishing cracks from other features in 

complex urban environments, potentially leading to false 

detections. 

In addition to image processing methods, several 

authors have integrated supervised machine learning 

algorithms into their approaches. For instance, the authors 

of [21] employ two probability maps for crack 

segmentation, leveraging intensity levels and neighborhood 

information with support vector machines. However, this 

method may face challenges in accurately distinguishing 

cracks in regions with complex textures or under varying 

lighting conditions. Similarly, the authors of [22] utilize 

extreme learning machines for image segmentation, 

facilitating parameter initialization without expert 

knowledge and enhancing processing time. Nonetheless, 

the performance might be affected by imbalanced datasets 

or non-linear crack patterns. Cha et al. [23] propose a 

convolved neural network for crack analysis, extracting 

regions of interest from cement pavement images. While 

innovative, this method may encounter difficulties in 

generalizing to diverse crack types or in scenarios with 

significant variance in crack morphology. The authors of 

[24] employ U-NET architecture, which may face 

challenges in accurately delineating cracks in areas with 

overlapping features or in the presence of noise. The 

authors of [25] use a deep residual network for pixel-level 

classification, but they might struggle with efficiently 

training the network due to computational complexity or in 

scenarios with limited labeled data. Moreover, approaches 

like data fusion, exemplified by Xu et al. [26], offer 

millimeter precision in defect reconstruction but may 

encounter challenges in integrating data from different 

sensors or in scenarios with occlusions or varying surface 

reflectance properties. 

B. Classification of Mono-Model Cracks 

In the realm of classifying pavement defects using a 

single machine learning algorithm, various approaches 

exist, each with distinct objectives regarding the types of 

defects analyzed. For instance, the authors of [27] conduct 

an analysis of supervised classification algorithms to 

discern the most effective method for discriminating 

between longitudinal, transverse, mesh cracks, and healthy 

pavement. They employ image processing techniques to 

generate a binary image and subsequently test artificial 

neural networks, support vector machines, and Random 

Forest algorithm for classification. Despite their efforts, the 

authors found that the support vector machines yielded the 

most optimal results. However, this approach may 

encounter limitations in accurately classifying complex 

crack patterns or in scenarios with high variability in crack 

morphology. Similarly, the authors of [28] compare the 

performance of the k-nearest neighbors algorithm and its 

fuzzy version for the classification of longitudinal and 

transverse cracks. Despite focusing solely on these types of 

cracks, their method may face challenges in generalizing to 

diverse crack types or in scenarios with significant variance 

in crack morphology. Additionally, reducing image 

attributes to delta_x and delta_y values may lead to loss of 

crucial information, potentially impacting classification 

accuracy. 

The authors of [29] developed a system employing 

image processing techniques for segmentation through 

multi-stage thresholds, intensity matrices, and the LAB 

color model, aiming to denoise and generate a binary 

image. However, this approach may face limitations in 

accurately classifying complex crack patterns or in 

scenarios with high variability in crack morphology. The 

reduction of the feature space may lead to the loss of crucial 

information, potentially impacting classification accuracy. 

While various classification algorithms, including support 

vector machines, decision trees, and k-nearest neighbors, 

were employed, the latter demonstrated the highest 

performance. Moreover, the use of deep learning methods 

for pavement defect classification remains limited due to 

the requirement of extensive data. The authors of [3] 

focused on distinguishing healthy pavement from defective 

pavement using segmentation and classification phases, 

comparing the SURF method and convolved neural 

networks. Nonetheless, this method may encounter 

challenges in accurately delineating cracks amidst complex 

urban features or in the presence of noise. Similarly, the 

authors of [30] utilized a low-altitude, low-range light 

detection system with unmanned aerial vehicles (UAV 

LiDAR) to generate three-dimensional point clouds for 

defect classification. While random forest exhibited the 

best performance, this approach may face challenges in 

http://www.jchr.org/


 
 

 

3716 

 

Journal of Chemical Health Risks 

www.jchr.org 

JCHR (2023) 13(6), 3712-3724 | ISSN:2251-6727 

integrating data from different sensors or in scenarios with 

occlusions or varying surface reflectance properties. 

Additionally, the authors of [31] employed convolved 

neural networks for crack detection using 3D images from 

the PaveVision 3D system, yet this method might struggle 

with efficiently training the network due to computational 

complexity or in scenarios with limited labeled data. 

C. Classification of Multi-Model Cracks 

In the classification of segmented or binary images into 

various types of cracks, few authors in literature propose 

using multiple classification models, although those that do 

present interesting methodologies. The authors of [32] 

developed a system to classify defects into mesh-type and 

linear cracks, the latter being further categorized into 

longitudinal and transverse cracks. However, they overlook 

the possibility of crack-free road surfaces, a common 

occurrence. Additionally, the interpretability of their neural 

network model for discriminating between transverse and 

longitudinal cracks is limited. This method may encounter 

challenges in accurately classifying complex crack patterns 

or in scenarios with high variability in crack morphology. 

The authors of [33] also employ two models for 

classification, utilizing image processing algorithms for 

illumination correction and projective integrals extraction. 

The use of two individual classification models shows 

relatively low fault tolerance, with accuracy results around 

72% and 67% for transverse and longitudinal cracks, 

respectively. This approach may struggle with accurately 

distinguishing cracks in regions with complex textures or 

under varying lighting conditions. Additionally, the 

reliance on decision rules for mesh-type crack classification 

may lead to inaccuracies in scenarios with overlapping 

features or ambiguous cases.  

The literature review extensively discusses various 

methodologies for crack segmentation and classification, 

highlighting both traditional image processing techniques 

and the integration of machine learning algorithms. 

Considering the challenges posed by complex crack 

patterns, varying morphologies, and environmental factors 

such as noise and lighting conditions, a method utilizing 

Convolutional Neural Networks (CNNs) for both 

segmentation and classification offers significant 

advantages. CNNs have demonstrated prowess in capturing 

intricate patterns and features within images, making them 

well-suited for the nuanced task of crack delineation. By 

leveraging CNNs, the proposed method can adaptively 

learn hierarchical representations of cracks, thereby 

enhancing segmentation accuracy. Moreover, CNNs can 

effectively handle the classification of mono-model cracks, 

accounting for the diversity in crack types and 

morphologies encountered in pavement images. Their 

ability to learn from data eliminates the need for manual 

feature engineering, making them particularly adept at 

generalizing across diverse crack types and environmental 

conditions. Furthermore, CNNs can exploit the spatial 

relationships within images, enabling robust classification 

performance even in scenarios with complex urban features 

or varying lighting conditions. By integrating CNNs for 

both segmentation and classification, the proposed method 

offers a holistic approach to pavement defect analysis, 

poised to address the challenges outlined in the literature 

review. 

III. PROPOSED METHODOLOGY 

The proposed research aims to develop a robust road 

crack detection system utilizing Convolutional Neural 

Networks (CNNs) for both segmentation and classification 

tasks. The CNN architecture leverages its ability to learn 

hierarchical representations from input images, allowing it 

to effectively capture intricate features indicative of road 

cracks. The system's workflow involves several key steps, 

including image acquisition, data preprocessing, model 

training, segmentation, and classification. 
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Fig. 2.Flow diagram for proposed road crack detection 

The flow diagram in Fig. 2 illustrates the proposed 

methodology for road crack detection utilizing 

Convolutional Neural Networks (CNNs). The process 

begins with image acquisition, where crack segmentation 

datasets are merged and filtered to organize images with 

and without crack pixels. Subsequently, preprocessing 

steps such as resizing, normalization, and data 

augmentation are performed to enhance the quality and 

diversity of the dataset. The dataset is then split into 

training, validation, and testing sets to facilitate model 

training and evaluation. The segmentation phase employs a 

CNN model to generate a probability map, which is 

thresholded to obtain a binary mask indicating crack 

presence. Following segmentation, a classification step 

categorizes detected cracks into specific classes using the 

CNN architecture, fine-tuned for this task. Model training 

involves optimizing parameters to minimize the loss 

function through backpropagation, culminating in an 

evaluation phase to assess the model's performance on the 

testing set. This unified approach integrates segmentation 

and classification tasks within the CNN framework, 

enabling adaptive feature learning for accurate and efficient 

road crack detection. 

A. Image Acquisition 

The dataset used in the research paper comprises 

approximately 11,200 images obtained by merging 12 

distinct crack segmentation datasets. Each image in the 

dataset is associated with a prefix indicating the dataset it 

originates from, facilitating organization and tracking of 

images. Additionally, there exist images devoid of crack 

pixels, which are filtered out using the file name pattern 

"noncrack*". 

• The 5 distinct crack segmentation datasets are merged 

to create a unified dataset containing a diverse range of 

road surface images with crack annotations. The 

merging process ensures a comprehensive coverage of 

different road surfaces and crack types. 

• All images in the dataset are preprocessed to ensure 

consistency and compatibility for further analysis. This 

may involve operations such as resizing, normalization, 

and augmentation to standardize the images and 

enhance their quality. 

• The dataset is structured into two main folders: 

"images" and "masks". The "images" folder contains 

the raw input images of road surfaces, while the 

"masks" folder contains corresponding ground truth 

masks with annotations delineating the location of 

cracks. 

• The dataset is split into training and testing sets to 

facilitate model training and evaluation. The splitting 

process ensures stratification, maintaining similar 

proportions of each dataset within both the training and 

testing sets. 

Let D denote the dataset, Dtrain represent the training 

set, and Dtest represent the testing set. 

The merged dataset DD can be represented as: 

D=D1⋃D2⋃…⋃D12     (1) 

Here D1,D2,…,D12 are the individual crack 

segmentation datasets. 

The dataset D is split into training and testing sets 

Dtrain and Dtest using appropriate proportions: 

Dtrain,Dtest=splitD        (2) 

Image Acquisition 

Pre-Processing 

Data Splitting 

CNN based Segmentation 

CNN based Classification 

Model Training 

Evaluation 
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B. Pre-Processing 

Pre-processing is a crucial step in road crack detection 

that involves preparing the input images for segmentation 

and classification tasks. It includes various operations such 

as resizing, normalization, and augmentation to enhance the 

quality of the data and improve the performance of the 

model. 

1) Resizing 

The input images are resized to a fixed dimension to 

ensure uniformity across the dataset. Typically, resizing is 

performed to reduce computational complexity and 

memory requirements while preserving important features 

of the original images. Let I denote the input image, Ii,j 

represent the intensity value of the pixel at position (i,j), and 

I' denote the pre-processed image. 

Let H and W represent the desired height and width of 

the resized image, respectively. The resized image I'can be 

obtained using interpolation techniques such as bilinear 

interpolation. 

I'=resizeI,H,W                       (3) 

2) Normalization 

Normalization is applied to standardize the pixel values 

of the input images, making them more suitable for training 

deep learning models. This involves scaling the pixel 

intensities to a common range, such as [0, 1] or [-1, 1], by 

subtracting the mean and dividing by the standard 

deviation. 

The pixel values of the pre-processed image I' are 

normalized using the following formula: 

Ii,j'=Ii,j-μ σ                (4) 

Here μ and σ are the mean and standard deviation of the 

pixel values in the original image I. 

3) Data Augmentation 

Data augmentation techniques are employed to 

artificially increase the size and diversity of the training 

dataset, thereby improving the generalization capability of 

the model. Common augmentation techniques include 

rotation, flipping, scaling, and adding noise to the images. 

Data augmentation involves applying a series of 

transformations to the input image I to generate augmented 

images I1',I1',…,In'. These transformations can be 

represented mathematically as: 

Ik'=augmentI         (5) 

Here k denotes the index of the augmented image. 

4) Data Splitting 

The pre-processed dataset is divided into training, 

validation, and testing sets. The training set is used to train 

the model, the validation set is used to tune 

hyperparameters and monitor performance during training, 

and the testing set is used to evaluate the final performance 

of the trained model. 

The pre-processed dataset is split into training, 

validation, and testing sets using appropriate proportions. 

Let D denote the dataset, Dtrain represent the training set, 

Dval denote the validation set, and Dtest represent the 

testing set. The splitting can be represented mathematically 

as: 

D=Dtrain⋃Dval⋃Dtest  (6) 

Dtrain,Dval,Dtest=splitD        (7) 

By performing pre-processing operations such as 

resizing, normalization, data augmentation, and data 

splitting, the input images are prepared for training and 

evaluation, leading to improved performance of the road 

crack detection model. 

C. Segmentation 

Segmentation is the process of partitioning an input 

image into meaningful regions, with the goal of identifying 

and delineating objects of interest, such as road cracks. In 

the context of the proposed research, segmentation is 

achieved using a Convolutional Neural Network (CNN), 

which learns to map input images to corresponding binary 

masks representing the presence or absence of cracks at 

each pixel. 

1) Input Image and Output Binary Mask 

 

• Let I denote the input image, where Ii,j represents the 

intensity value of the pixel at position (i,j). 
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• The output of the segmentation process is a binary mask 

M, where Mi,j is equal to 1 if the corresponding pixel 

in the input image belongs to a crack, and 0 otherwise. 

2) CNN Model 

• The CNN model, denoted by fθI , is parameterized by 

θ, representing the weights and biases of the network. 

• The CNN architecture consists of multiple layers, 

including convolutional layers, pooling layers, and 

activation functions, which collectively learn 

hierarchical features from the input image. 

3) Segmentation Process 

• Given an input image I, the CNN model fθI  processes 

the image through forward propagation to produce an 

output. 

• The final output layer of the CNN produces a 

probability map P, where each pixel value represents 

the likelihood of belonging to a crack. Mathematically, 

this can be expressed as: 

Pi,j=fθIi,j     (8) 

• The probability map P is then thresholded to obtain the 

binary mask M. Pixels with probability values above a 

certain threshold T are classified as cracks (assigned a 

value of 1), while pixels below the threshold are 

considered non-crack pixels (assigned a value of 0). 

Mx,y=1if Px,y≥T0if Px,y<T                       (9) 

Where: 

o Mx,y represents the pixel value at coordinates (x,y) in 

the binary mask M. 

o Px,y represents the probability value at coordinates 

(x,y) in the probability map P. 

• The choice of threshold T can significantly impact the 

segmentation performance and may be determined 

empirically or through optimization techniques. 

4) Loss Function 

• During training, the CNN is optimized to minimize a 

loss function that measures the discrepancy between the 

predicted binary mask M and the ground truth mask GT 

(obtained from manually annotated data). 

• A commonly used loss function for binary 

segmentation tasks is the pixel-wise cross-entropy loss, 

which compares the predicted probabilities with the 

ground truth labels. 

Mathematically, the loss function L can be defined as: 

L=-1Ni=1Nj=1NGTi,jlogMi,j+1-GTi,jlog1-Mi,j 

(10) 

Where N represents the total number of pixels in the 

image. 

By training the CNN model on a dataset of annotated 

images using backpropagation, the network learns to 

effectively segment road cracks from input images, thereby 

facilitating accurate crack detection in real-world scenarios. 

D. Classification 

Following segmentation, the detected cracks are 

classified into different categories based on their 

characteristics. This step involves analyzing features 

extracted from segmented crack regions and assigning them 

to predefined classes (e.g., longitudinal cracks, transverse 

cracks). The CNN model is fine-tuned or extended to 

perform the classification task, leveraging the hierarchical 

representations learned during segmentation. 

CNN Model Architecture: The CNN model architecture 

consists of multiple layers, including convolutional layers, 

pooling layers, and fully connected layers. These layers 

learn hierarchical features from the segmented crack 

regions, which are then used for classification. 

Classification Layer: The final layer of the CNN model 

is a classification layer, which maps the learned features to 

the output classes. The number of nodes in this layer 

corresponds to the number of classes to be predicted. 

Softmax Activation: The Softmax activation function is 

typically applied to the output layer of the CNN for multi-

class classification tasks. It converts the raw scores or logits 

into probabilities, ensuring that the predicted class 

probabilities sum up to 1. 

Py=cX=ezck=1Kezk      (11) 

Where: 
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• Py=cX is the probability of the input belonging to class 

c, 

• zc is the raw score or logit for class c, 

• K is the total number of classes. 

Loss Function: The loss function measures the 

discrepancy between the predicted class probabilities and 

the ground truth labels. For multi-class classification tasks, 

the cross-entropy loss function is commonly used. 

Ly,y=-c=1Kyclogyc        (12) 

By training the CNN model on a dataset of segmented 

crack regions and corresponding labels, the model learns to 

accurately classify road crack regions into predefined 

categories, facilitating effective road crack detection. 

Integrating segmentation and classification tasks within a 

unified CNN framework, the proposed system achieves 

accurate and efficient road crack detection. The utilization 

of deep learning techniques enables the system to 

adaptively learn discriminative features from data, thereby 

enhancing its performance in real-world scenarios. 

IV. SIMULATION AND RESULTS 

A. Dataset Description 

The dataset utilized in this study, as referenced in [34], 

is an amalgamation of approximately 11,200 images 

sourced from 12 distinct crack segmentation datasets. Each 

image is labeled with a prefix denoting its originating 

dataset. Notably, some images within the dataset do not 

contain any crack pixels, identifiable by the filename 

convention "noncrack*". All images have been uniformly 

resized to dimensions of 448×448 pixels. Structurally, the 

dataset comprises two primary folders: "images" and 

"masks", encompassing all available images. Additionally, 

there are two supplementary folders, namely "train" and 

"test", housing training and testing images respectively. 

The partitioning procedure ensures a stratified distribution, 

maintaining consistent proportions of each dataset within 

both the training and testing sets. Refer to Table I for a 

visual representation of sample images extracted from the 

dataset. 

 

TABLE I.  SAMPLE IMAGES FROM DATASET [34] 

CRACK FOREST DATASET 

     

Crack 500 

      

Crack tree 

      

Deep crack 
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Gaps 

      

B. Evaluation Parameters 

Following are the evaluation parameters: 

TABLE II.  EVALUATION PARAMETERS 

Parameter Description 

TP (True 

Positive) 

Number of road crack regions 

correctly classified as positive 

(cracks). 

TN (True 

Negative) 

Number of non-crack regions 

correctly classified as negative (non-

cracks). 

FP (False 

Positive) 

Number of non-crack regions 

incorrectly classified as positive 

(false alarms). 

FN (False 

Negative) 

Number of road crack regions 

incorrectly classified as negative 

(missed cracks). 

 

Accuracy=TP+TNTP+TN+FP+FN   (13) 

Precision=TPTP+FP                                    (14) 

Sensitivity=TPTP+FN                                  (15) 

Specificity=TNTN+FN                                  (16) 

Error Rate=FP+FNTP+TN+FP+FN       

(17) 

False Positive Rate FPR=FPFP+TN  (18) 

F-Score=2TP2TP+FP+FN                            (19) 

Matthews Correlation Coefficient MCC=TP×TN-

FP×FNTP+FNTP+FPTN+FNTN+FP 

(20) 

Kappa Statistics=Observed accuracy-expected 

accuracy1-expected accuracy 

(21) 

C. Results 

TABLE III.  RESULTS OF THE PROPOSED CNN BASED 

SYSTEM 

Parameters CNN Based Classification  

Accuracy 0.9647 

Error Rate 0.0353 

Sensitivity 0.9647 

Specificity 0.9815 

Precision 0.9608 

False Positive Rate 0.0185 

F-Score 0.9627 

MCC 0.9442 

Kappa Statistics 0.8933 

 

Table III presents the comprehensive results of the 

proposed CNN-based system for road crack classification. 

The system achieves a notable accuracy of 96.47%, 

indicating the proportion of correctly classified instances 

out of the total instances. With an error rate of 3.53%, the 

system demonstrates a high level of precision in its 

classification task. Sensitivity and specificity, standing at 

96.47% and 98.15% respectively, highlight the system's 

ability to accurately identify both positive (crack) and 

negative (non-crack) instances. Furthermore, the precision 

metric, representing the ratio of true positive classifications 

to the total predicted positive classifications, achieves a 

commendable value of 96.08%. The false positive rate, at 

1.85%, showcases the proportion of negative instances 

incorrectly classified as positive. The F-score, a harmonic 

mean of precision and sensitivity, reaches 96.27%, 

affirming the balance between precision and recall. 

Moreover, the Matthews Correlation Coefficient (MCC) 
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and Kappa statistics, measuring the correlation between 

observed and predicted classifications, achieve values of 

94.42% and 89.33% respectively, signifying the robustness 

and reliability of the CNN-based classification system. 

TABLE IV.  COMPARATIVE ANALYSIS OF RESULTS WITH 

PREVIOUS RESEARCH WORKS 

Method Accuracy 

Hough Transform [35] 95.61% 

Custom YOLOv7 Model 

[36] 

92.00% 

Proposed CNN-based 

framework 

96.47% 

 

Table IV provides a comparative analysis of the proposed 

CNN-based framework's performance against previous 

research works, as indicated by their respective citation 

numbers. The Hough Transform method [35] achieves an 

accuracy of 95.61%, demonstrating its effectiveness in road 

crack detection but slightly trailing behind the proposed 

framework. In contrast, a custom YOLOv7 Model [36] 

yields an accuracy of 92.00%, indicating a lower 

performance compared to both the Hough Transform and 

the proposed framework. Notably, the proposed CNN-

based framework, with a citation number corresponding to 

the present study, outperforms both previous methods with 

an accuracy of 96.47%. This comparison underscores the 

advancements made by the proposed framework in road 

crack detection, showcasing its potential for significant 

contributions to infrastructure maintenance and road safety. 

V. CONCLUSION 

In conclusion, the research paper presents a novel 

methodology leveraging Convolutional Neural Networks 

(CNNs) for road crack detection, which is crucial for 

ensuring safety and efficiency in transportation systems. 

The proposed approach integrates segmentation and 

classification tasks within a unified CNN framework, 

achieving remarkable accuracy of 96.47%. This high 

accuracy, coupled with other impressive performance 

metrics such as sensitivity, specificity, precision, and F-

score, underscores the effectiveness of the CNN-based 

methodology in accurately identifying road cracks. 

Additionally, comparative analysis with previous methods 

demonstrates the superiority of the proposed framework, 

highlighting its potential for significant contributions to 

infrastructure maintenance and road safety. Overall, the 

CNN-based approach offers a robust and efficient solution 

for road crack detection, with promising implications for 

enhancing infrastructure management and ensuring road 

safety in transportation networks. 
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