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ABSTRACT:  

The system named Stratus, intended for big public cloud infrastructure, is described in the 

abstract. Several power plants, each with different electrical costs and carbon emissions, 

power this system. For every request, the system attempts to direct traffic to the data center 

that is closest in terms of geographic distance, least expensive power, and least amount of 

carbon emissions. This is accomplished by modeling the networking and computing 

components as graphs and using Voronoi partitioning to identify the data center for routing 

according to the priorities set by the cloud operator.  The significance of cloud computing 

services is emphasized in the introduction, along with the difficulties associated with load 

balancing, latency, operating expenses, and carbon emissions in data centers. The 

advantages of distributed servers globally in terms of lower latency and operating expenses 

are mentioned. It also covers the possible long-term effects of carbon emission rules as well 

as the mounting worry over carbon emissions from data center electricity. 

 

 

1 INTRODUCTION 

To solve these issues, a number of projects and plans 

have been put up, such as the utilization of locally 

produced clean energy and load balancing based on 

electricity pricing and carbon intensity. Nevertheless, 

network traffic-related carbon emissions are not fully 

taken into account in the current recommendations. It's 

also necessary to take into account elements like service 

level agreements (SLAs), cooling techniques, and the 

price of electricity.  

The study presents Stratus, a graph-based 

method that uses Voronoi partitions to regulate cloud 

operation parameters, in order to overcome these issues. 

The paper offers several contributions: a distributed 

algorithm for minimizing average request time, electricity 

cost, and carbon emissions; data on carbon intensity, 

electricity prices, and round trip times for different 

geographical regions; and the development of a model 

that details carbon emissions, electricity costs, and 

request time for computational and networking aspects. 

The performance of the distributed method is assessed in 

the study under different conditions.  

The paper's overall goal is to offer a thorough 

approach to cloud operation optimization that takes into 

account a variety of variables, including latency, 

operating costs, and environmental impact.  

An overview of current proposals and research 

initiatives focused on various elements of cloud 

computing operations optimization, with a particular 

focus on electricity costs and carbon emissions, can be 

found in the related work section.  

2 LITERATURE REVIEW 

Stanojevic et al. [2] provided a distributed consensus 

technique to decrease energy prices while preserving QoS 

levels, whereas Qureshi et al. [1] introduced a distance-

constrained energy price optimizer. Electricity cost was 

articulated as a flow network problem by Rao et al. [16, 

17], who also suggested control algorithms for load 

balancing and server power regulation. A revised 
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marginal cost method was presented by Wang et al. [18], 

while Mathew et al. [19] suggested an algorithm to 

regulate the number of servers online in order to lower 

energy usage.  

Liu et al.'s [3] distributed algorithms make use of 

optimization strategies like gradient projection to reduce 

energy and delay costs. They also took into account the 

financial and environmental effects of data centers on 

society.  

In an effort to increase power efficiency, Baliga 

et al. [14] and Mahdevan et al. [20] examined power 

usage in network switches and cloud computing 

infrastructure, respectively.  

Certain recommendations, such those made by 

Moghaddam et al. [21], Doyle et al. [13], and Liu et al. 

[12], took carbon emissions into account when 

determining how to prioritize service requests. A 

methodology for flow optimization was created by Gao et 

al. [22] to balance carbon emissions, electricity costs, and 

average job time.  

The paper suggests using Voronoi partitions, 

which have been used in a variety of applications, as an 

alternative to current methods. Voronoi partitions provide 

a less complicated strategy with potential advantages for 

dynamic demand scenarios in cloud computing, in 

contrast to earlier approaches that frequently entail 

sophisticated mathematical procedures.  to explain the 

meanings of a graph and a Voronoi division and the ways 

in which cloud computing uses these ideas.  

A set of vertices ( V ) and a set of edges ( E ) 

that each connect two vertices make up a graph ( G = (V, 

E) ). Vertices can stand in for data centers in the context 

of cloud computing, while edges can stand in for the 

networks connecting them. Weights indicating variables 

like latency, electricity costs, or carbon emissions related 

to data transmission between data centers may be 

assigned to edges.  

A Voronoi partition is a partitioning of a space 

into regions according to how close a set of points known 

as seeds are to each other. Every area has every point that 

is closest to a specific seed relative to every other seed. 

Voronoi partitions can be used in the context of cloud 

computing to divide geographical areas into areas that are 

serviced by various data centers. The Voronoi partition 

establishes which geographic regions are serviced by each 

data center, which functions as a seed.  

3 PROBLEM FORMULATION 

The formulation of the problem is figuring out how to 

distribute incoming service requests around data centers 

to minimize a number of variables, including average 

request time, electricity cost, and carbon emissions. This 

can be accomplished by taking into account the client's 

location while submitting the request, each data center's 

cost of electricity and carbon emissions, and the network 

delay between the client and each data center. By taking 

these parameters into consideration, Voronoi partitions 

can be utilized to effectively determine which data center 

is nearest to each client, guiding the assignment of service 

requests accordingly.  

The following definition of a graph's fundamental 

elements and ideas is accurate:  

1. Connectors: Nodes, sometimes called vertices, are 

the constituent components that make up a graph. 

Nodes can stand in for a variety of things in the 

context of cloud computing or network architecture, 

including servers, data centers, and physical 

locations.  

2. Rounded Corners: The links between nodes are 

shown by edges. They show connections or 

exchanges between the entities that the nodes 

represent. An edge in an undirected graph is 

bidirectional since it lacks a specified direction 

associated with it. In contrast, edges in directed 

graphs, also known as digraphs, have a direction 

that denotes a one-way interaction between nodes.  

3. Route: In a graph, a path is a series of nodes joined 

by edges between every subsequent pair of nodes. In 

a graph, paths are used to represent pathways or 

links between various nodes.  

4. Graph with Weights: Every edge in a weighted 

graph has a weight, which is a numerical number 

ascribed to it. These weights can stand for a number 

of characteristics related to the node-to-node 

connection, including latency, cost, distance, and 

carbon emissions.  
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The definition given clearly describes the basic features 

and attributes of graphs, which are necessary for 

modeling and assessing a variety of systems, such as 

network architecture and cloud computing.  

Voronoi partitions and their use are defined precisely in 

the following description: 

1. Voronoi Partitions: A geometric breakdown of a 

space into regions based on a set of points called 

sites, generators, or seeds is known as a Voronoi 

partition, sometimes referred to as a Voronoi 

diagram. All of the locations in the space that are 

closer to one of these sites than to any other site 

make up each area in the partition, which is centered 

around one of these points. Put otherwise, every 

point in the space corresponds to the area that is 

closest to the site.  

2. Distance Metric: A distance metric is used to 

determine which zone a location is located in. The 

concept of distance between a point and the sites is 

defined by this measure. Depending on the 

particular application, common distance metrics 

include Manhattan distance, Euclidean distance, and 

other customized metrics.  

3. How to Use: Applications for voronoi partitions can 

be found in many domains, such as robotics, where 

they are employed to split a workspace into areas 

that are designated for distinct robots. Every robot is 

in charge of sweeping the area connected to its site 

or seed point. This method facilitates effective 

workspace coverage and multi-robot collaboration.  

Voronoi partitions can be used to partition the 

geographical space into regions that correspond to various 

data centers or server locations in the context of cloud 

load balancing. Client queries are directed to the data 

center linked to the region in which the client is located, 

as each region revolves around a single data center. By 

allocating the workload among various data centers 

according to how close they are to clients, this strategy 

helps to maximize resource usage and lower latency.  

In our work, the sources of cloud service 

requests as well as data center locations make up the set 

of points. The paths to various data centers are linked to 

each request source, and these paths are used to determine 

the Voronoi partitions. The partitions designate which 

data center is in charge of handling requests coming from 

particular sources.  

An illustration of how request sources are 

divided between two data centers is shown in Figure 1. 

The data center with the shortest path to each source of 

requests is assigned to it. These divisions are represented 

by the Voronoi cells, which show which sources of 

requests each data center is in charge of fulfilling at any 

particular time.  

All things considered, Voronoi partitions are 

employed to effectively assign incoming requests to the 

relevant data center according to their network pathways 

and proximity. This methodology facilitates the 

optimization of workload allocation among data centers 

and enhances the overall efficiency of the cloud 

infrastructure
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A graph ( G = (|Q|, |E|, |w|) ) is defined by the 

formulation, in which ( |Q|) is a set that represents the 

sources of requests or data centers, ( |E| ) is the set of 

edges linking these points, and ( |w| ) is the set of weights 

attached to the edges. The time ( T_i ) needed to service a 

portion of the request, the carbon emissions ( G_i ) 

related to servicing the portion, and any associated power 

costs ( E_i ) along the edge are used to calculate the 

weights. To determine these weights' relative relevance, 

the functions ( R_1 ) and( R_2) are used.  

 

The regions that each data center serves are represented 

by( N ) subsets of the set ( |Q|). A collection of ( N ) 

subsets of ( |Q| ) is produced by this partitioning, and each 

subset ( P = {P_i}_{i=1}^N  satisfies the following 

criteria:  

1. All subsets added together equal ( |Q| .  

2. If ( i neq j ), then the intersection of any two subsets 

( P_i ) and ( P_j ) is empty.  

3. There are no empty subsets in any of P_i.  

4. All of P_i's subsets are connected.  

Next, a set of subsets is created using the Voronoi 

partitioning in order to minimize the sum of the three 

variables: average request time, power cost, and carbon 

emissions. The definition of the Voronoi partition ( P_i ) 

connected to data center ( i ) is as follows:  

1. Define ( U := P_i(t) cup P_j(t)), where the current 

partitions for data centers ( i ) and ( j ) are denoted 

by( P_i(t) ) and ( P_j(t) ) correspondingly.  

2. Based on the distance to the data centers ( i) and ( j 

), for each point ( x ) in ( U ), identify if it is a part 

of( P_i) or ( P_j).  

3. Using the distances computed in step 2, update the 

partitions ( P_i(t + 1) ) and ( P_j(t + 1)) 

appropriately.  

Figure 2 provides the pseudocode for this pairwise 

partitioning rule. This method takes into account the 

various aspects influencing the delivery of cloud services 

and guarantees the effective use of resources. 

 

Fig 2. Peak Daily Price of electricity for supplier in the region of three centres studied 

 

A pairwise partitioning rule can be used to find the 

Voronoi partitions that minimize the distance between 

request sources and data centers. The objective of this 

rule is to allocate every point to the Voronoi division 

linked to the closest data center. To balance the load on 

the data centers, a source that is equally spaced from 

many data centers is assigned to the partition with the 

fewest members.  

The lowest weight of a path, (d(i, j)), connecting 

two points (i) and (j) in a weighted graph represents the 

distance between them. The total weight of all the path's 

edges equals the weight of the path.  

The following is an expression of the goal 

function that seeks to reduce the distance between request 

sources and data centers:  

[min sum_{i=1}^{N} sum_{j in P_i} d(i, j)}]  
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where: - (N) is the total number of data centers; - (P_i) is 

the Voronoi partition associated with data center (i); - (d(i, 

j)) is the distance, computed as the lowest weight of a path 

between point (i) and (j).  

The Voronoi partitions can efficiently distribute 

request sources to the closest data centers, optimizing the 

distance between them, by minimizing this objective 

function. This guarantees effective load balancing and 

resource distribution among the cloud infrastructure's data 

centers.  

The distance between every graph node and 

every data center is computed in order to create the first 

Voronoi partitions. The partition linked to the data center 

that produces the shortest path between the node and the 

data center is then expanded to include each node.  

The following pseudocode can be used to summarize the 

procedure:  

1.Initialize Partitions: Using computed distances, assign 

each node to the partition linked to the closest data center.  

2. Partitions should be updated:  

- For any set of partitions connected to data centers (i) 

and (j), as follows:  

- For every graph region:  

- Include the region in a temporary partition linked to 

data center (i) if the path between the region and 

data center (i) is shorter than the path between the 

region and data center (j).  

- If not, include the area in a temporary division 

linked to data center (j).  

- Apply the necessary temporary partitions to the two 

areas' partitions.  

By ensuring that every node is assigned to the Voronoi 

partition linked to the closest data center, this procedure 

optimizes resource allocation and load balancing within 

the cloud infrastructure. 

 

Fig. 3 Peak Daily Price of electricity for supplier in the region of three centres studied 

We must take into account a number of variables, including 

average request time, carbon emissions, and electricity 

costs, in order to examine the differences in prices 

throughout data centers. These variables may change based 

on the data center's location and other outside variables. 

We can carry out the analysis as follows:  

1. Data Collection: Compile information on typical 

request times, carbon emissions, and electricity 

costs for every data center. Performance monitoring 

systems, power bills, carbon emission reports, and 

historical records are some possible sources of this 

information.  

2. Cost Calculation: Add the expenses for power, 

carbon emissions, and average request time to 

determine the overall cost for every data center. 

This could entail giving each factor a weight 

according to its relative relevance.  

3. Comparison : To find differences, compare the 

overall expenses of several data centers. Tables or 

graphs can be used to illustrate the differences in 

this comparison.  

4. Analysis: Examine the elements influencing the 

price fluctuations. Costs can be affected by a variety 

of factors, including demand patterns, infrastructural 

efficiency, energy sources, and geographic location.  
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5. Optimization: Look at possible cost-saving 

measures like splitting up the workload among data 

centers, implementing energy-saving technology, or 

settling on more favorable electricity contracts.  

6. Sensitivity Analysis: Perform sensitivity analysis to 

determine how changes in input parameters (such as 

the price of power or the factors affecting carbon 

emissions) will affect the total expenses. This can 

assist in determining the main causes of cost 

variances.  

We can learn more about the differences in prices 

throughout data centers and find areas where cloud 

infrastructure management may be optimized and 

expenses can be reduced by carefully examining these 

variables.  

We must take into account the local electricity 

provider pricing in the areas where the data centers are 

situated in order to examine the variations in electricity 

costs between data centers. Here, we'll concentrate on the 

states of California, Virginia, and Ireland and investigate 

the possible financial benefits of taking advantage of the 

variations in electricity rates.  

1. Data Collection: Get information from regional 

providers in the states of Virginia, California, and 

Ireland regarding the cost of power. This 

information could be publicly accessible market 

data or historical electricity price information from 

the relevant suppliers.  

2. Price Comparison: Examine the costs that various 

providers in each area are charging for electricity. 

Examine how costs have changed over time and 

note any notable regional variations.  

3. Cost Savings Calculation: Determine how much you 

might save by using data centers located in areas 

with cheaper electricity rates. To find the overall 

cost of power, this computation may entail 

estimating each data center's electricity consumption 

and multiplying it by the associated electricity rates.  

4. Scenario Analysis: Examine several situations to 

determine how fluctuating electricity prices affect 

overall operating expenses. Take into account 

variables that could impact electricity pricing, such 

as times of peak demand, seasonal fluctuations, and 

regulatory changes.  

5. Strategic Decision-Making: Determine how to 

divide the workload among data centers 

strategically using the analysis as a guide. 

Optimizing resource use means taking into account 

things like dependability, performance needs, and 

cost savings.  

6. Risk Assessment: Consider the hazards involved 

with using power pricing as a means of cutting 

expenses. Future electricity costs may be impacted 

by variables like supply outages, market volatility, 

and regulatory uncertainty.  

Cloud operators may maximize their data center 

infrastructure's efficiency and reduce operating costs by 

undertaking a thorough review of electricity pricing in 

various regions. 

 

Fig. 4 Daily peak carbon intensity of electricity supplier in the region of india data centre studied 
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An examination of the financial and environmental 

effects of cloud infrastructure can be gained by 

comparing electricity prices and carbon emissions across 

various areas. Below is a summary of the main 

conclusions:  

1. Electricity costs: - The Ireland region usually has 

the highest peak costs, with a maximum price per 

MWh approaching $550. The hourly variance of 

power costs shows that, despite Ireland's high peak 

prices, there are significant price changes during 

peak hours and less during off-peak hours.  

2. Carbon Emissions: Reducing the environmental 

impact of cloud operations requires examining the 

carbon intensity of electricity providers in different 

areas.  

- Data on carbon intensity fluctuates over time as a 

result of shifts in power plant operations and 

electricity consumption. Environmental effect can 

be reduced by using real-time data.  

- Our method makes load routing decisions based 

on carbon intensity data instead of weather data. 

This is beneficial because, because of the intricate 

dynamics of power plant operations and the 

dynamics of the electricity market, weather 

conditions do not always directly correlate with 

carbon emissions.  

3.  Difficulties and Points to Remember: Supply and 

demand in the electrical grid are difficult to balance, 

particularly when using uncertain renewable energy 

sources like solar and wind power.  

- Even with the use of renewable energy sources, 

carbon intensity can fluctuate due to changes in 

power plant operations and energy demand.  

- The generation of renewable energy may not 

always directly correlate with carbon intensity, 

which emphasizes the necessity for complex 

algorithms to efficiently optimize load balancing 

and reduce environmental impact.  

To summarise, cloud operators may minimise 

their environmental impact and optimise costs by utilising 

real-time data on carbon emissions and electricity prices 

to influence their decision-making. However, while 

creating efficient optimization strategies, factors like the 

dynamic nature of power networks and the integration of 

renewable energy must be carefully taken into account.  

Data centers employ the confinement of aisles as 

a tactic to divide hot and cold airflow routes, increasing 

cooling effectiveness and lowering cooling expenses. 

This is an explanation of aisle containment's operation 

and how it affects cooling expenses:  

1. Aisle Containment: Using physical barriers like 

Plexiglas or PVC drapes, the hot aisle (where server 

exhaust airflow departs) and the cold aisle (where 

cool air is fed to the servers) are enclosed.  

- Aisle containment increases the effectiveness of 

cooling systems by separating the hot and cold 

airflow channels. This keeps hot and cold air from 

mingling.  

- In order to ensure that servers receive cool air 

directly and to reduce hot air recirculation, cold air 

provided through perforated floor tiles is directed 

particularly to the cold aisle.  

2. Impact on Cooling Costs: - By maximizing airflow 

and temperature dispersion, aisle confinement 

lessens the strain on cooling equipment like 

computer room air conditioners (CRAC) units or 

chiller units. Aisle confinement makes cooling 

systems work more effectively by keeping hot and 

cold air from mingling, which lessens the need for 

excessive cooling and cuts down on energy use. For 

data center operators, this means fewer energy bills 

and operating costs due to the decreased cooling 

workload.  

3. Difference in Cooling Expenses: - Aisle 

containment's ability to lower cooling costs may 

vary according on workload, local climate, and data 

center design, among other things.  

- Because natural cooling techniques like free air 

cooling can be used, aisle containment may have a 

greater effect on cooling costs in areas with 

warmer climates or lower ambient temperatures. 

On the other hand, aisle containment may still be 

beneficial in areas with warmer temperatures 

overall or in warmer climes, but it may also be 
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enhanced by other cooling techniques like water 

cooling or additional cooling systems.  

All things considered, aisle confinement works 

well to maximize cooling effectiveness and lower cooling 

expenses in data centers. Data center operators can 

achieve considerable energy savings and operating 

expense reductions while maintaining optimal server 

performance and reliability by employing aisle 

containment and taking other cooling measures into 

consideration based on local climate conditions and 

workload. 

 

Fig. 5 Typical model of the Coefficient of Performance ( COP ) curve for chilled water CRAC Unit 

 

Let's examine how the cooling expenses for the data 

center model were calculated and interpreted:  

1. Power Consumption of Servers: - The HP Proliant 

DL360 G3s model uses 150W of power when it is 

not in use and 285W when it is. The data center uses 

319.2 kW of power when it is fully utilized 

(285W/server * number of servers), and 168 kW 

when it is idle (150W/server * number of servers).  

2.  Cooling Equipment: - There are four CRAC units 

in the data center; they each have a 90 kW cooling 

capacity and a 10 kW power consumption. At a rate 

of 16,990 m^3, each CRAC unit forces chilled air 

into the plenum.  

3. Calculating the Cost of Cooling: The following 

formula can be used to determine cooling costs (C): 

[C =frac{Q}{COP} (T_{text{sup}} + 

(T_{text{safe}} - T_{text{max}})) + 

P_{text{fan}}] where: - ( Q ) is the power 

consumed by the servers; - (T_{text{sup}} ) is the 

temperature of the air supplied by CRAC units; - 

(T_{text{safe}} ) is the maximum temperature that 

can be reached at the server inlets; - ( 

T_{text{max}}) is the maximum temperature of the 

server inlets; - (P_{text{fan}}) is the power needed 

by the CRAC unit fans; and - (COP ) is the CRAC 

unit's coefficient of performance.  - The temperature 

of the air that the CRAC unit supplies affects the 

COP.  

4. Results and Interpretation: - The cooling cost in 

kilowatts for the three systems—CAC-CRAC (cold 

aisle containment with CRAC cooling), FAC (free 

air cooling), and NCAC-CRAC (no cold aisle 

containment with CRAC cooling)—is displayed in 

the simulation results (Figure 9).  

- The cooling cost in kilowatts is represented on the y-

axis, and the x-axis shows the data center's % utilization.  

- On the graph, every line corresponds to a distinct 

cooling system setup.  

- The simulation makes it possible to compare cooling 

costs under various conditions, which helps choose the 

data center's most economical cooling plan.  
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In summary, the cooling cost simulations offer 

significant insights into the energy consumption and 

financial consequences of various cooling approaches, 

assisting data center managers in making well-informed 

decisions to maximize energy efficiency and minimize 

operating costs. 

. 

 

Fig. 6 Layout of cooling cost simulators with (a) cold aiste containment and (b) no cold aisle containment 

 

Table 1 

Average round trip time between data centres and sources of requests, carbon intensity of data centres and sources of requests 

and daily number of requests at source 

Region Californi

a (ms) 

Ireland 

(ms) 

Virginia 

(ms) 

Carbon

 Intensity 

(g/kWhr) 

Number of 

Requests 

(Millions) 

Austria (AUS) 177.98 47.67 159.07 870 7.038 

Belgium (BEL) 171.98 28.45 158.09 317 11.736 

California (CAL)    384  

Colorado (COL) 42.77 155.36 101.27 903 6.76 

Connecticut 

(CON) 

88.05 117.65 75.73 392 4.293 

Finland (FIN) 188.47 55.77 176.72 99 5.418 

Florida (FLO) 54.26 171.87 98.21 762 26.365 

France (FRA) 192.44 21.24 184.75 96 61.355 

Georgia (GEO) 58.91 115.12 77.43 694 1.968 

Germany (GER) 177.74 40.89 157.68 612 58.76 
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Illinois (ILL) 63.81 142.78 102.08 544 18.049 

Indiana (IND) 69.65 151.05 83 986 7.803 

Ireland (IRE)    655  

Italy (ITA) 188.71 44.71 167.3 473 55.372 

Kansas (KAN) 50.48 148.4 85.2 817 4.545 

Kentucky (KEN) 71.98 146.85 87.29 968 5.169 

Maryland 

(MAR) 

99.71 140.46 88.05 641 6.69 

Massachusetts 

(MAS) 

89.33 98.02 72.1 603 9.602 

Minnesota 

(MIN) 

62.09 147.74 85.79 744 6.724 

Netherlands 

(NET) 

163.93 19.71 138.79 548 15.527 

New York 

(NEW) 

96.45 78.71 134.11 386 27.604 

North Carolina 

(NCA) 

72.32 72.45 31.12 604 11.817 

Norway (NOR) 194.82 48.84 183.08 6 6.69 

Ohio (OHI) 83.81 132.08 69.17 873 14.828 

Oklahoma 

(OKL) 

46.42 159.96 98.22 819 4.378 

Ontario (ONT) 90.84 142.81 97.12 224 16.64 

Oregon (ORE) 27.66 213.48 153.28 246 4.807 

Pennsylvania 

(PEN) 

71.99 118.53 52.78 597 16.097 

Portugal (POR) 222.69 64.11 190.02 550 10.925 

Spain (SPA) 194.55 35.83 172.47 487 40.633 

Sweden (SWE) 186.01 48.79 170.28 19 11.887 

Tennessee (TEN) 235.61 276.43 311.61 661 7.891 

Texas (TEX) 37.61 151.93 98.96 763 31.015 

UK (UK) 175.59 17.62 163.25 614 78.647 
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Virginia (VIR)    559  

Washington 

(WAS) 

29.57 192.11 126.53 938 10.119 

Wisconsin (WIS) 67 146.49 94.03 834 7.025 

 

 

Fig. 7 Cooling cost of various data centre cooling system at various level of demand 

If so, let's modify the interpretation as appropriate:- 

 

Cooling Cost Calculation: -  

The cooling cost for the system that uses CRAC cooling 

and cold aisle containment is computed using the 

previously given formula.  

- On the other hand, because the "free air cooling" 

system uses ambient air from the surrounding 

environment and doesn't require additional 

mechanical cooling, the cooling cost simply 

comprises the power needed for the fans.  

4 RESULTS AND INTERPRETATION: -  

The cooling cost in kilowatts for the three systems—

CAC-CRAC (cold aisle containment with CRAC 

cooling), FAC (free air cooling), and NCAC-CRAC (no 

cold aisle containment with CRAC cooling)—is 

displayed in the simulation results (Figure9).  

- The "free air cooling" system's cooling cost is 

constant at all data center usage levels because it 

just uses fan power.  

- On the other hand, because of the CRAC units' 

operation, the CAC-CRAC system has variable 

cooling costs based on the data center's use.  

- In particular, in areas with favorable ambient 

conditions, the comparison of these systems sheds 

light on the potential cost and energy savings 

associated with switching to "free air cooling" from 

standard CRAC-based cooling solutions.  

Overall, the simulation findings demonstrate the 

potential benefits of "free air cooling" over traditional 

CRAC-based cooling systems in terms of cost and energy 

efficiency, especially in areas with climates that allow 

ambient air to be used for cooling.  

policy balancing. The latency between the server and 

client is a useful statistic for service request time. A 

server was installed at each node location as part of an 

experiment on PlanetLab [39] to obtain the round trip 

time statistics. Then, for around two days, nodes in the 

same region as our three data center locations sent out 
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fifteen-minute interval pings to the other geographical 

regions. Table 1 displays the average latency determined 

by this experiment.  

By adopting the lowest latency as a criterion for routing 

load, the average service request time might be decreased 

by routing load from a geographical area to the data 

center region. Table 1 illustrates that in the event that a 

load balancing scheme is implemented, a portion of the 

load will be sent towards each data center region. This 

means that since load is not routed using latency as the 

only criterion, any decrease in carbon emissions or 

electricity costs will result in an increase in average 

latency. 

The measured latency for the Virginia, California, and 

Ireland data centers, respectively, between the data center 

and the other areas is shown in Figures 10, 11, and 12. 

Interestingly, latencies at the Virginia data center 

fluctuate a lot while they stay relatively consistent in the 

California and Ireland data centers over time. We 

speculate that the Virginia region's congestion is to blame 

for this. Furthermore, we observe that the latency between 

the California and Ireland data centers and the other areas 

varies to some extent. Consequently, we can say that 

latency changes over time, especially in areas where 

congestion occurs. 

 

Fig. 8 Latency between US and different geographical region at 15 Min interval 

 

Fig. 9 Latency between India and different geographical region at 15 Min interval 
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Without a doubt, keeping an eye on the rise in average 

service request time brought on by the decrease in carbon 

emissions or electricity costs is essential to precisely 

determining the effects of such optimizations. It's critical 

to understand that, while this may not always be the case, 

there are situations in which cutting electricity costs or 

carbon emissions doesn't result in longer average service 

request times. Changes in server loads, network 

congestion, and other variables might affect latency and 

overall service quality.  

Through consistent observation and evaluation 

of these indicators, cloud providers can make 

knowledgeable choices regarding infrastructure 

optimization while upholding satisfactory standards of 

service quality. Furthermore, using dynamic load 

balancing algorithms that take into account a variety of 

variables, such as latency, carbon emissions, and 

electricity costs, can assist in achieving a balance between 

service efficiency and environmental sustainability.  

Three data centers were established: one in 

Ireland and two in the United States (Virginia and 

California) to run the algorithm and determine the 

weights of the graph. These sites were picked to reflect 

the key data centers that Amazon's EC2 platform is 

located in these areas.  

We model 34 sources of requests in our 

simulation, representing states in the US, provinces in 

Canada, and several European countries. As shown in 

Figure 13, every source is linked to every data center by a 

single edge. 

We must compute the time, carbon emissions, 

and electricity cost involved with fulfilling the 

networking and computational components of a request in 

order to establish the weights of the edges in the graph. 

This includes:  

1. Time: Determining the amount of time needed to 

fulfill a request while accounting for computational 

processing time and network latency.  

2. Carbon emissions: Calculating the carbon 

emissions related to fulfilling the request while 

accounting for the electricity's carbon intensity and 

any other pertinent variables.  

3. Electricity cost: Calculating the cost of electricity 

required to fulfill the request while taking into 

account variables like regional electricity rates and 

data center power usage.  

After identifying these variables, we may use functions 

that aggregate these metrics to give weights to the graph's 

edges, as explained in Section 3.4. The algorithm will 

then use these weights to decide how to route requests 

within the cloud infrastructure. 

 

Fig. 10 Simulation Setup 
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Fig. 11 Latency between Virginia and different geographical region at 15 Min interval 

 

On the other hand, under the best effort electricity 

scenario, the algorithm gives priority to lowering 

electricity costs over carbon emissions, resulting in an 

equal distribution of requests throughout the data centers.  

We modify the relative importance of carbon 

emissions and power cost by varying the parameters α 

and β in the second set of simulations, where the 

algorithm balances the elements of time, carbon 

emissions, and electricity cost. Table 3 provides a 

summary of these simulations' outcomes. These findings 

shed light on the trade-offs that arise when attempting to 

balance several goals in cloud resource management.  

All things considered, the simulations show how 

well the suggested algorithm works to optimize the 

distribution of cloud resources according to a number of 

parameters, including time, carbon emissions, and 

electricity costs. Cloud operators can make well-informed 

judgments to optimize their operations while taking cost 

and environmental effect into account by looking at the 

performance under various scenarios.  

To investigate more trade-offs and enhance the 

algorithm's performance in actual cloud systems, more 

research and optimization may be necessary. 

Furthermore, continuous observation and adjustment in 

response to evolving circumstances and demands will be 

necessary to guarantee the optimization and sustainability 

of cloud resource management moving forward. 
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Table 2 

Average Service Request time, Daily Carbon Emission and Number of Requests Serviced at Each DC for Various Scenarios 

Scenario Average 

Service 

Request 

Time 

(ms) 

Carbon 

Emis- 

sions 

(kg) 

Electricit

y 

Cost ($) 

Number

 of 

Requests 

Serviced 

by 

Californi

a 

(million) 

Number

 of 

Requests 

Serviced 

By 

Ireland 

(million) 

Number

 of 

Requests 

Serviced 

By 

Virginia 

(million) 

Best Effort 

Time 

90 1378 240 241 822 302 

Best Effort 

Carbon 

132 1200 195 0 1365 0 

Best Effort 

Electricity 

177 1567 100 1276 0 89 

RoundRobin 170 1522 257 455 455 455 

 

 

Fig. 12 Number of request serviced at each data centre when best effort time scenario is used 
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Fig. 13 Number of request serviced at each data centre when best effort carbon scenario is used 

 

This graphic shows how requests are split up among the 

data centers dynamically over time for various scenarios. 

It makes it possible to see patterns and trends in the 

distribution of requests, demonstrating how well the 

algorithm adjusts to shifting priorities and situations.  

Furthermore, cloud operators can learn more 

about the effectiveness and efficiency of their resource 

allocation policies by examining the distribution of 

requests over time. To maximize efficiency and resource 

use, they can recognize times of high demand or 

congestion and modify their allocation methods 

accordingly.  

In general, the integration of the quantitative 

analysis presented in Table 2 with the visual aid of Figure 

14 provides a thorough comprehension of the ways in 

which various scenarios affect the distribution of requests 

among data centers, as well as the related expenses and 

service durations. By adopting a holistic viewpoint, cloud 

operators can balance multiple elements like cost, 

environmental effect, and service quality while making 

well-informed decisions to accomplish their goals. 

 

Fig. 14 Number of request serviced at each data centre when best effort Electricity scenario is used 
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Figure 17 shows how many requests were handled at each 

data center over a period of time for the round robin 

scenario. According to the round-robin load balancing 

approach, Figure 17 shows that the requests are evenly 

split among the three data centers during the course of the 

observation period.  

These visuals offer insightful information on 

how various events affect the service requests distribution 

across data centers over time. They show how variances 

in parameters like latency, power expenses, and carbon 

emissions affect how requests are distributed, resulting in 

various patterns of use for every data center. Cloud 

operators can improve their understanding of the load 

balancing algorithms' performance and make well-

informed decisions to maximize resource utilization, save 

expenses, and improve service quality by examining these 

patterns. 

 

 

Fig. 15 Carbon Emitted at each time interval under a variety of scene 

  

Fig. 16 Electricity Cost at each time Interval 

 

observe that the cost of electricity fluctuates greatly based 

on the circumstances. Compared to the other scenarios, 

the electricity cost is comparatively high in the "Best 

Effort Time" scenario, where the objective is to minimize 

the time taken for service requests. This is due to the fact 

that requests are sent to data centers without taking 
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electricity costs into account, only considering delay. On 

the other hand, since requests are sent to the data center 

with the lowest carbon emissions—in this case, the 

Ireland data center—the "Best Effort Carbon" scenario 

yields the lowest electricity cost. In comparison to the 

other scenarios, the "Best Effort Electricity" scenario 

results in intermediate electricity costs since it strikes a 

balance between decreasing electricity costs and service 

request times. In conclusion, the "RoundRobin" scenario 

leads to greater electricity costs than best effort scenarios 

but lower costs than "Best Effort Time" scenario since it 

fairly distributes requests around data centers. 

These findings demonstrate the trade-offs 

associated with maximizing load balancing tactics in 

cloud computing settings. In order to manage their 

resources more sustainably and efficiently, cloud 

operators might take into account variables like latency, 

electricity costs, and carbon emissions. 

 

Fig. 17 Average Service request time at each time interval under a variety of Scenarios 

 

The "Best Effort Time" scenario, on the other hand, has 

the most variability along with the lowest average service 

request time. This is because it places a higher priority on 

lowering service request time. This is due to the fact that 

requests are only sent in response to latency concerns, 

which causes response times to vary depending on the 

level of congestion at various data centers.  

All things considered, these findings highlight 

how crucial it is to take into account a variety of elements 

when developing load balancing algorithms for cloud 

computing environments, such as latency, electricity 

costs, and carbon emissions. Cloud operators can 

maximize resource usage while guaranteeing the effective 

and long-lasting operation of their infrastructure by 

finding a balance between these factors. Further studies 

could examine more intricate request processing models, 

such the Partition/Aggregate design pattern, to enhance 

load balancing techniques and boost system performance 

in general. 
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Fig. 18 Total Carbon Output with verying relative price function 

 

Fig. 19 Total Electricity Cost with Varing Relative Price Function 

 

Apple begins to shift queries from Dublin to California, 

resulting in an increase in latency and electricity costs. 

These findings highlight the compromises made in order 

to balance average service request time, electricity cost, 

and carbon emissions. Through the manipulation of α and 

β, cloud operators can customize their load balancing 

tactics to achieve particular sustainability and 

performance goals.  

In conclusion, the simulations offer insightful 

information on the relationships between many elements 

influencing the sustainability and performance of cloud 

services. Through meticulous evaluation of these 

variables and the implementation of suitable load 

balancing algorithms, cloud operators may maximize 

resource efficiency, reduce ecological footprints, and 

guarantee compliance with service level agreements. 
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Fig. 20 Average Service Request Time with Relative Price Function 

 

Therefore, choosing the ideal values of α and β requires 

thorough analysis of the trade-offs between 

environmental goals and performance indicators. 

Furthermore, as you pointed out, the load balancing 

algorithm's adaptability and efficacy might be further 

increased by dynamically adjusting α and β in response to 

real-time conditions.  

All things considered, the simulations offer insightful 

information about the intricate relationships between 

different elements in cloud computing infrastructures. 

Cloud operators can create more sustainable and effective 

strategies for resource management and operational goal 

achievement by integrating these insights into their 

decision-making processes.  

Our research concludes by showing that cloud operations 

can be adjusted to lower operating expenses and carbon 

emissions. But the average service request time goes up 

as a result of this optimization. We have examined the 

trade-offs between service performance, carbon 

emissions, and electricity costs under various scenarios 

through thorough simulations.  

In the end, a number of factors, including service 

level agreements (SLAs), legal constraints, and the 

financial implications of carbon trading programs, will 

determine how these aspects are balanced. Operators may 

design their cloud services in the most advantageous way 

by using the findings from our study and taking into 

account the unique features of their cloud infrastructure.  

It is significant to remember that the nature of the 

service and the limitations imposed by SLAs may have an 

impact on how feasible it is to execute such optimization 

techniques. However, our research offers helpful advice 

to cloud operators that want to improve the efficiency and 

sustainability of their business in a quickly changing 

technological environment.  
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