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ABSTRACT:  

The drive for efficient and sustainable hydrogen production has prompted research into creating 

more effective electro-catalysts. By carefully synthesizing metal composite/alloy films through 

various deposition techniques, it's possible to fine-tune their electro-catalytic characteristics. This 

review explores the development and properties of promising electrocatalysts, particularly those 

based on iron-group elements (iron, nickel, or cobalt). Amorphous alloys, with their unique 

combination of electrochemical, mechanical, and corrosion-resistant properties, have attracted 

significant research interest. The review highlights molybdenum and phosphorus as especially 

effective elements for creating amorphous alloys, focusing on their co-deposition technique. 

Additionally, other metal groups like pure metals and rare-earth elements in alloyed composite 

forms are discussed. Finally, the review emphasizes the use of electrodeposition methods for 

preparing these alloys, particularly relevant for applications in the chlor-alkali industry. 

1. Introduction 

Hydrogen is gaining traction as a potential energy 

carrier for a low-carbon future, offering a clean 

alternative to traditional fossil fuels. Electrochemical 

hydrogen generation by electrocatalysis has received 

considerable interest as a cost-effective and 

environmentally healthy technique of producing 

hydrogen from water.1 The employment of catalysts to 

enhance electrochemical processes at the electrode-

electrolyte interface is known as electrocatalysis. 

Designing and developing efficient and long-lasting 

electrocatalysts is critical for sustainability of hydrogen 

generation. 

 

The hydrogen evolution reaction (HER) plays a critical 

role in bridging the gap between fundamental science 

and practical applications. Early research on hydrogen 

adsorption, a key step before HER, laid the foundation 

for modern electrochemistry. Meanwhile, the long-held 

dream of water splitting – using electricity to separate 

water into its components – has gained renewed 

urgency in recent decades. The rise of renewable energy 

sources and the promise of clean, fuel cell-powered 

technologies have made HER a key research area. 

 
Fig 1 : HER Activity vs. Hydrogen Adsorption Energy 

(Volcano Plot)² 

2. Metals 

Volcano plot, a key concept in electrocatalysis, suggests 

that optimal HER activity hinges on a specific balance in 

hydrogen (H) adsorption energy³. This implies that most 

pure metals, except for a few expensive noble metals, 

struggle to efficiently catalyze HER. To overcome this 

limitation and utilize cheaper metals, researchers turn to 

alloying, which combines multiple metals with varying 

H-bonding strengths⁴.  Alloying offers a two-pronged 

approach: strong M-H bonds on one metal component 

can facilitate initial H adsorption, while weaker M-H 

bonds on another component can promote H2 formation 

and release. The prevailing theory suggests that strong 

M-H bonds initiate H adsorption, followed by surface 

diffusion of the adsorbed H atoms to sites with weaker 
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M-H bonds. These weaker bonds then readily release 

H2 molecules from the electrode surface. 

 

Similar to the influence of size differences in noble 

metal alloys, introducing a metal of varying size can 

alter the catalyst's lattice structure, potentially creating 

more active sites for HER⁵. While corrosion is less of a 

concern during HER compared to anodic reactions 

where metal oxides promote dissolution, 

electrochemical instability remains a significant 

challenge for active metal electrocatalysts.  Research on 

active metal alloys for HER prioritizes two key 

improvements: enhancing electrochemical stability and 

maximizing active sites. Porosity engineering is a 

promising approach to achieve both goals ⁵. 

While many electrocatalyst materials struggle in 

alkaline media, metal alloys stand out as particularly 

promising candidates for the hydrogen evolution 

reaction (HER). Their unique properties make them 

well-suited for this challenging environment ⁶. While 

most HER research focuses on acidic environments, 

alkaline media holds significant value for fuel cell 

applications. However, the presence of hydroxide 

anions adds complexity to the HER mechanism in 

alkaline media, creating an area of ongoing research. 

 

Research on metallic alloy electrocatalysts can pave the 

way for the development of new types of 

electrocatalysts based on transition metal compounds. 

Interestingly, alloying approaches can even incorporate 

various anions like phosphorus (P) into the structure. 

These anion-containing alloys share similarities with 

their corresponding transition metal compounds. For 

example, a NiPx alloy exhibits properties akin to a Ni₂P 

compound, as we'll explore further. 

 

3. Metal phosphides 

Since the 1990s, NiPx alloys have been gaining traction 

as promising candidates for HER electrocatalysis⁷⁻⁹. 

Computational studies hinted at a metallic-like behavior 

of Ni₂P during HER ¹⁰. This concept gained ground with 

recent experiments confirming metal phosphides as a 

viable option ¹¹⁻¹². This promising finding has fueled a 

surge in research on transition metal phosphides 

(TMPs) as HER electrocatalysts, particularly in the last 

decade (2010-present) ¹²⁻³².TMPs hold significant 

advantages over traditional materials like metal 

sulfides. For instance, FeP/CC electrocatalysts exhibit 

overpotentials comparable to Pt, the benchmark 

material³³. Unlike MoS₂ where activity is restricted to 

reactive edges, TMPs demonstrate activity throughout 

their entire structure³³. Additionally, their metallic 

properties may be intrinsic to their crystal structure, 

avoiding the challenges of unstable phases encountered 

in materials like MoS₂. 

 

Despite their initial promise, transition metal phosphides 

still face hurdles before widespread practical use. Their 

negatively charged phosphorus sites make them reactive, 

but this can also lead to the development of a passive 

layer on the surface. This acts as a barrier, completely 

hindering the electrocatalytic reaction.  Additionally, our 

understanding of both the electrochemical and materials 

chemistry of transition metal phosphides lags behind that 

of other similar transition metal compounds discussed 

earlier. To bridge this gap, researchers need a deeper 

knowledge of how these materials behave within an 

electrochemical cell. 

 

Table 1 compares the performance of nickel phosphide 

(Ni₂P) catalysts for the hydrogen evolution reaction 

(HER) under different synthesis conditions. These 

catalysts were all tested in 0.5 M sulfuric acid (H₂SO₄). 

Notably, Table 1 highlights the performance of Ni₂P 

nanoparticles, the first experimentally studied Ni₂P HER 

catalysts, synthesized using a reaction between 

trioctylphosphine (TOP) and nickel(II) acetylacetonate at 

320°C for 2 hours. Since then, researchers have 

developed several methods to create Ni₂P nanoparticles 

in a liquid suspension (colloidal). 

 

Table 1. Compilation of HER Performance Metrics for 

Various Nickel Phosphide Catalysts Synthesized under 

Different Conditions and Evaluated in 0.5 M H₂SO₄. 

Material Tafel 

slope 

( mV 

dec⁻¹ ) 

Exchange 

current 

density 

( A cm⁻² ) 

Loading 

density 

( mg 

cm⁻² ) 

Ref 

Ni₂P 

NPs/Ti 

46 3.3✕10⁻⁵ 1.0 33 

Ni₂P/CN

T 

53 5.37✕10⁻⁵ - 34 

NiP₂ 

NS/CC 

51 2.60✕10⁻⁴ 4.3 35 
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Ni₁₂P₅/C

NT 

56 7.10✕10⁻⁵ 0.75 36 

Ni₂P/GC

E 

84 2.90✕10⁻⁶ 0.15 37 

MOF-

derived 

Ni₁₂P 

270 4.50✕10⁻⁵ 0.35 38 

Ni₅P₄ 46.1 2.75✕10⁻⁴  0.15 39 

 

 

For the initial HER catalyst studies, the chosen 

synthesis method was the one reported by Tracy and 

colleagues. This method was selected because it offers 

a simple one-pot reaction to produce a uniformly sized 

and phase-pure (single-phase) Ni₂P nanocrystals.Ni₂P 

nanoparticles were applied to titanium foil substrates to 

create working electrodes for HER testing. These 

electrodes underwent an annealing process at 450°C in 

a hydrogen and nitrogen mixture (5% H₂ / 95% N₂). 

This step removes organic ligands that initially coated 

the nanoparticles. The resulting films of Ni₂P 

nanoparticles wanted a low overpotential of only -116 

mV to get a current density of -10 mA cm⁻² in a strong 

electrolyte (0.5 M H₂SO₄). These Ni₂P electrodes also 

demonstrated good stability and efficient hydrogen 

production over a sustained 2-hour period. 

Similar promising results were obtained by Hu and 

colleagues. Their Ni₂P nanoparticles, synthesized 

through a reaction among sodium hypophosphite and 

nickel chloride hexahydrate (NiCl₂·6H₂O), displayed 

excellent activity and stability in electrolyte solutions. 

They achieved results of approximately -125 and -230 

mV at -10 mA cm⁻² in both conditions, respectively. 

These results put Ni₂P in the company of top non-

precious metal HER electrocatalysts reported at that 

time, rivaling other materials like MoS₂, NiMoN, MoB, 

and Mo₂C.Beyond the initial examples, research has 

shown similar promise for a broad range of Ni₂P 

materials. 

○ Sun et al. fabricated Ni₂P nanoparticle films 

through a low-temperature process. They achieved 

this by phosphiding pre-deposited nickel 

hydroxide precursors. These films performed 

competitively, requiring around 130 mV 

overpotential at -10 mA cm⁻² current density in 0.5 

M H₂SO4. Notably, they also exhibited 

remarkable hydrogen production for a period of 15 

hours.⁴² 

○ Liu et al. noted similar activity with Ni₂P 

nanoparticles deposited on multi-walled carbon 

nanotubes (Ni₂P/CNT). These composite catalysts 

acttain an overpotential of around -124 mV only 

with -10 mA cm⁻². The resulting Ni₂P/CNT was 

then deposited onto glassy carbon electrodes for 

testing.⁴³ 

The introduction of a versatile and scalable method for 

synthesizing metal phosphide electrodes. This method 

involves using commercially available metal foils via a 

vapor phase reaction with many organophosphine 

compounds. The results displayed remarkable HER 

performance. For example, Ni₂P electrodes needed 

overpotentials of around -128 mV in 0.5 M H₂SO₄ and -

183 mV in 1 M KOH for HER.Furthermore, we 

successfully applied this strategy to thin metal films 

deposited through evaporation.This method allows for 

the deposition of conformal metal phosphide coatings, 

well-suited for diverse substrates. This includes 

promising photocathode materials like highly doped 

silicon, opening doors for advancements in 

photocatalysis. While these Ni₂P thin films on silicon had 

low material loadings and surface areas, they still 

exhibited moderate HER, attaining an overpotential of 

around -240 mV. 

Researchers have achieved significant improvements in 

Ni₂P's HER performance by incorporating it into 

composite materials with carbon or using 3D electrode 

designs. 

Carbon Composites: For example, Wang et al. created 

carbon-encapsulated Ni₂P nanoparticles by transforming 

Ni-containing precursors with hydrogen gas. These 

composites exhibited superior HER, attaining only an 

overpotential of -87 mV. The improved results are due to 

increased nanoporosity within the material, This 

approach improves the utilization of active sites, 

resulting in a significant increase in catalytic activity. 

 

3D Electrodes: Du et al. reported exceptional HER 

activity with a 3D electrode design. They coated a three-

dimensional graphene/nickel foam structure. This 

electrode achieved a very low overpotential of -55 mV. 

The high performance is likely due to the increased 

number of active sites available due to the large surface 

area of the porous electrode, along with improved 

movement of ions and electrons within the material. It's 

important to note that the activity of this 3D electrode 
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was normalized to a flat surface area for comparison, 

despite its inherently porous nature.⁴⁵ 

Undeterred by the diverse approaches to Ni₂P synthesis, 

size, shape, and supporting materials, most studies show 

a similar average overpotential of -125 mV for Ni₂P 

HER catalysts.The crystal structure and bonding within 

Ni2P can significantly impact its catalytic properties for 

HER. Studies have explored how different nickel 

phosphide phases influence HER activity. 

Impact of Nickel Phosphide Phases: Liu et al. compared 

the performance of various phases (Ni₁₂P₅, Ni₂P, and 

Ni₅P₄) under similar conditions (Figure 1). They found 

that Ni₅P₄ displayed superior HER activity compared to 

the other two phases.The improved performance is 

linked to the way nickel and phosphorus atoms interact 

in Ni₅P₄. Nickel atoms have a slightly positive charge, 

and the arrangement of phosphorus atoms strengthens 

their collaboration, leading to better 

activity.Nevertheless, it's important to note that 

variations in particle size, morphology, and surface area 

between the samples could also contribute to the 

observed differences in activity (Figure 1)⁴¹. 

 

These findings, corroborated by similar research, 

strongly suggest that the metal-to-phosphorus ratio 

plays a critical role in the hydrogen evolution reaction 

(HER) performance of metal phosphides. Materials 

with a higher phosphorus content often exhibit better 

HER activity.  For instance, reports on NiP₂ nanosheets, 

which have a high phosphorus content, demonstrate 

exceptional HER with an overpotential of only -75 mV. 

This mechanism suggests a cooperative interaction 

between phosphorus and nickel atoms, implying a 

dependence on the ratio of phosphorus to nickel. 

 

 
Figure 1: Linear sweep Voltammogram of 

Nanostructured Nickel phosphide phases. 

 

4. Summary 

Efficient and affordable HER electrocatalysts are key to 

unlocking the full potential of clean hydrogen for a 

sustainable energy future.  HER holds immense potential 

for production Green hydrogen, a key player in 

sustainable energy solutions.Currently, platinum (Pt) 

reigns supreme as the best effective HER catalyst. 

However the limitations associated with practical use, 

such as the need for carbon support and potential stability 

issues, make it an impractical choice for large-scale 

hydrogen production.Pt-based catalysts often require 

carbon support, which can raise operational costs due to 

potential mechanical degradation over time.Portable 

applications for HER, for example in fuel cells for 

powering devices, would necessitate Pt recycling 

strategies due to its scarcity.Therefore, the focus of 

research has shifted towards exploring alternative 

electrocatalysts that are both inexpensive and practical. 

Nickel phosphides (NiPx) have emerged as a frontrunner 

in this category, offering a promising alternative to Pt for 

HER. 

 

5. Outlook 

Despite the promising results, more advanced research is 

required to completely realize the potential of NiPx for 

HER applications: 

Carbon Catalyst Support:While highly desirable, a high 

surface area carbon support isn't the only factor for 

optimal performance. Even platinum (Pt), the best-

known HER catalyst, requires a suitable carbon support 

to achieve its full potential (beyond just a low 

overpotential). This highlights the importance of the 

carbon support's physical and chemical structure in 

influencing HER activity. 

Alternative HER Catalysts:The search for practical 

alternatives to expensive Pt catalysts has led researchers 

to explore compounds like transition metals. These 

materials can be sulfides, selenides, phosphides, or 

carbides, offering a wider range of options with 

potentially lower costs. 

Core/Shell Design for Enhanced Performance:A 

promising approach for boosting the available  active 

sites in HER electrocatalysts is the core/shell 

architecture. This design allows for a targeted placement 

of the active material, maximizing its utilization while 

maintaining other desirable properties for practical 

applications. While increasing active sites on the edges 

of 2D layered structures shows promise for the hydrogen 

evolution reaction (HER), the overall structure may not 

be practical for large-scale production or real-world 
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applications. The core/shell approach offers a more 

practical solution. 

Doping the carbon support with foreign elements is a 

powerful technique for enhancing the performance of 

HER electrocatalysts. This method strategically 

manipulates the charge distribution within the carbon 

material, resulting in the creation of a higher number of 

active catalytic sites. 
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