www.jchr.org JCHR (2024) 14(2), 1158-1171 | ISSN:2251-6727

Unravelling the Impact: Undiagnosed Chronic Obstructive Pulmonary Disease and its Influence on Cardiovascular Diseases - A Review

¹Bhaveshkumar P. Patel, ²Tejaskumar V. Bhatt

¹Professor, Department of Mechanical Engineering, U. V. Patel College of Engineering,

Faculty of Engineering & Technology, Ganpat University - 384012. Gujarat, India.

ORCID ID:0000-0003-0907-4981

²Associate Professor, Department of Biomedical Engineering, U. V. Patel College of Engineering,

Faculty of Engineering & Technology, Ganpat University – 384012. Gujarat, India.

ORCID ID:0000-0003-3016-5693

Corresponding Author E-mail: contacttotejas@gmail.com

ORCID ID: 0000-0003-3016-5693

(Received: 07	January 2024	Revised: 12 February 2024	Accepted: 06 March 2024)					
KEYWORDS	Abstract							
Childhood Hansen's	Background							
disease, Leprosy in	Chronic obstructive pu	lmonary disease manifests as a gra-	dually advancing and incapacitating					
children and	respiratory ailment marked by the constriction of airflow. The undiagnosed population with COPD							
Paediatric.	presents a major threat to both individual health outcomes and healthcare systems, resu							
	heightened healthcare e	xpenses and a decreased quality of life	e for those affected. Investigating the					
	potential implications of	of undetected COPD on cardiovascul	ar health provides a comprehensive					
	analysis of the current k	nowledge and key findings in this intri-	cate interplay.					
	Objective:							
	This review examines	the literature on undiagnosed CO	PD, exploring its association with					
	cardiovascular diseases	. It explores the intricate relationsh	nip between undetected COPD and					
	cardiovascular health, o	ffering key insights into this complex	interplay. Focusing on epidemiology,					
	risk factors, clinical p	presentation, and barriers to diagnos	sis, the objective is to provide an					
	understanding of the cha	allenges associated with undetected CO	PD.					
	Methods:							
	A thorough and systema	tic search was executed on PubMed be	tween 2019 and July' 2023					
	Results:							
	A global examination of	f studies highlights diverse prevalence	rates of undiagnosed COPD. Notably,					
	the highest rate reaches	91.5%, with British Columbia, Canad	a, following closely at 72.1%. COPD					
	patients show elevated	rates of heart failure and varying 1	ncidences of ischemic heart disease					
	compared to those witho	but COPD.						
	Conclusions:							
	Undiagnosed COPD p	oses concealed challenges with pro	to the disease's insidious pattern A					
	multifaceted strategy in	mproved awareness, and enhanced did	e to the disease's installous hature. A					
	harriers and reduce the r	profound consequences of delayed diag	nosis					
	suffers and reduce the	storound consequences of delayed diag						

Abbreviations: COPD: Chronic obstructive pulmonary disease, CRP: C-reactive protein, CVD: Cardiovascular diseases, FEV1: Forced expiratory volume in 1 second, FVC: Forced vital capacity, GOLD: Global initiative

1. INTRODUCTION

COPD poses a global public health challenge, giving rise to significant financial, societal, and healthcare

for chronic obstructive lung disease, ICS: Inhaled corticosteroid, LABA: Long-acting beta agonist, LAMA: Long-acting muscarinic antagonist, PFT: Pulmonary function test, VEGF: Vascular endothelial growth factor,

encumbrances due to its widespread prevalence and the associated impact on disability and mortality [1,12]. Cardiovascular disease, cancer, and COPD are the leading global causes of death. The frequent

Journal of Chemical Health Risks www.jchr.org JCHR (2024) 14(2), 1158-1171 | ISSN:2251-6727

coexistence of CVD and COPD in populations contributes to a worse prognosis for myocardial infarction in COPD patients [40]. COPD and CVD are intricate conditions shaped by environmental and genetic factors, with complex and not fully elucidated interconnecting mechanisms [32]. Approximately 70% to 80% of adults with COPD are estimated to remain undiagnosed [16]. Multiple factors contribute to the undiagnosed of COPD. Smoking, a key risk factor, is frequently underreported, and exposure to environmental pollutants may not be readily recognized [2,6,9,10,36]. The World Health Organization has stated that the current daily worldwide smoking prevalence surpasses 1.1 billion individuals, and it is expected to rise to 1.3 billion by the year 2025 [25]. Moreover, healthcare systems face challenges in implementing widespread screening and diagnostic measures, further complicating early identification. In individuals experiencing elderly dyspnea, distinguishing between heart failure and chronic obstructive pulmonary disease is crucial. Heart failure is identified by insufficient blood circulation caused by diminished contractility [31]. COPD treatment should address not only respiratory complications but also actively focus on preventing and treating the prevalent cardiovascular diseases in affected patients [30].

In the population aged 65 and above, COPD ranks as the third most common cause of mortality, leading to almost 1 million hospitalizations annually in the United States. This respiratory condition extends its global impact, being implicated in approximately 3 million deaths worldwide each year [24, 35]. Impacting around 384 million individuals worldwide, COPD is a progressive respiratory condition that led to 3.2 million deaths in the year 2015 alone [8].

This in-depth research review aims to fill the knowledge gap concerning undiagnosed COPD and its impact on cardiovascular diseases, striving to unravel the complexities surrounding this silent epidemic. Despite the availability of diagnostic tools and guidelines, there exists a substantial population with unrecognized COPD, leading to missed opportunities for timely interventions, disease management, and improved quality of life.

2. METHODS

This comprehensive review seeks to explore the multifaceted dimensions of undiagnosed COPD and its effect on cardiovascular diseases, offering a synthesis of current literature to unravel the complexities surrounding its prevalence, risk factors, clinical presentation, and barriers to early diagnosis. By examining the nuances of undiagnosed COPD, we aim to bridge existing knowledge gaps and provide a thorough understanding of the challenges faced by both individuals and healthcare systems.

2.1 SEARCH STRATEGY AND SELECTION CRITERIA

The authors conducted a review to assess and compare the patient characteristics, risk elements, symptoms, and screening techniques among individuals with confirmed diagnoses and those without diagnosed conditions.

The search strategy for this review involves a comprehensive exploration of major databases, of PubMed published between 2019 to July' 2023. A combination of keywords and medical subject headings terms are employed to capture relevant literature on undiagnosed COPD and cardiovascular system. The search will encompass variations of terms such as undiagnosed COPD, missed diagnosis of COPD, cardiovascular system, heart failure along with terms related to risk factors, symptoms, and diagnostic challenges. The search is restricted to peer-reviewed articles published in English, emphasizing observational studies, interventional studies, and systematic reviews. The publication date range will be set to capture the latest evidence, with a secondary exploration of seminal works if deemed relevant. Studies exclusively addressing diagnosed COPD cases are excluded. The inclusion criteria involve the studies featuring populations with undiagnosed COPD as well as its relation with cardiovascular diseases, providing data on prevalence, risk factors, clinical presentation, or barriers to diagnosis. Table 1 represents the detailed classification of articles as a part of comprehensive study. A quality assessment will be conducted to evaluate study design, sample size, and methodological rigor, ensuring that the selected studies contribute robust and reliable information to the synthesis of evidence.

The focus of the review articles is exclusively on COPD, with a deliberate exclusion of diseases such as cardiovascular conditions, physical activity, lung cancer, cardiac comorbidities, obstructive sleep apnea, tuberculosis and heart diseases from their scope [18,19,20,23]. By narrowing their focus to COPD and its association with cardiovascular system alone, these articles aim to provide a specialized and in-depth analysis of the respiratory condition along with heart without delving into the broader context of other associated diseases. This deliberate limitation allows for a more targeted exploration of COPD and cardiovascular related aspects, emphasizing a specific and detailed examination of the pulmonary disorder and

cardiac abnormality without incorporating additional health dimensions.

The age group of population for this review is adults having greater than 18 years as well as majority of articles having age group greater than 40 years. GOLD standards and FEV1/FVC ratio below 0.70 is encompassed in the definition of COPD [26,31]. The screening method for the undiagnosed condition has been determined through the spirometry test. This structured search strategy and selection criteria aim to capture a diverse range of studies while maintaining methodological rigor in identifying and assessing the literature relevant to undiagnosed COPD.

Author	Study	Identificati	Screening	Sample	Prevalence	Risk	Age	Conclusion	Country
	type	on	method for	size	of	factor	group		
		definition	undiagnosed		undiagnosed				
		for COPD	COPD		COPD (%)				
Jefferso	Cross	GOLD	PFT, chest x-	N=877	9	Tobacc	40	This study	India
n	-	defined	ray, 6-minute			0	years	exposed	
Daniel	sectio	COPD	walk test, serum			smoke,	and	significant	
et al.	nal		immunoglobulin			Bio	above	misclassifi	
(2023)	obser		E and % blood			mass		cation by	
[5]	vatio		eosinophils			fuel		physicians.	
	nal		-						
	study								
Buyu	Cross	FEV1/FV	Spirometry	N=229	23.7	Passive	30 to	The	China
Zhang	sectio	C ratio less		43		smokin	79	prediction	
et al.	nal	than 0.70				g,	years	model can	
(2023)	diagn	with FEV1				occupa		function as	
[1]	ostic	<60%				tional		an initial	
	study					exposu		screening	
						re, air		tool for	
						polluti		identifying	
						on		undiagnose	
								d COPD	
								patients in	
								primary	
								care	
								environme	
								nts.	
Fernan	Cross	5 questions	Spirometry	N=432	2.5	Smoke	45 to	This tool	US
do	sectio	and peak		5		d	80	exhibited a	
J. Marti	nal	expiratory				cigarett	years	diminished	
nez	study	flow rate				e, prior		sensitivity	
et al.						diagno		but	
(2023)						sis of		elevated	

Table 1: Characteristics and classification of articles for study

-										
l	[9]						asthma		specificity	
l									in	
l									detecting	
l									clinically	
l									significant	
l									COPD.	
ľ	Thuong	COP	smoking	Chronic cough,	N=280	19	Earlier	45 to	There are	US
l	hien V	DGen	history of	respiratory	0		diagno	80	multiple	
l	Tran	e	10 or more	exacerbations,			sis and	years	factors	
l	et al.	study	pack-years	spirometry			treatme	5	associated	
l	(2023)	5	1 5	1 5			nt		with	
l	[13]								undiagnose	
l	[10]								d COPD.	
ŀ	S M	Cross	GOLD	Six different	N=116	5.16	Cigaret	40	The test's	Brazil
l	Martins	sectio	guideline	screening tests	2	5.10	te	vears	performan	Diuzn
l	et al	nal	FEV1/EV	four screening	2		smokin	and	ce cost	
l	(2022)	study	C < 0.7	questionnaires			a	above	and ease of	
l	(2022)	study	C < 0.7	questionnancs,			g,	above		
l	[10]			spirometer and			COOKIII		use	
l				peak now			g		the	
l				measurement			history		dete eti en	
l							biomas		detection	
l							s fuel, ,		of 26.7	
l							dust		cases per	
l									1,000	
ļ		~					~		patients.	
l	Nina	Cross	FEVI/FV	Health	N=366	5.09	Smoki	62 to	lt	Norway
l	Faksvå	sectio	C < 0.7 or	examination	7		ng,	65	identified a	
l	g	nal	below the	survey,			tobacc	years	COPD	
l	Caspers	Study	lower limit	spirometry,			0		prevalence	
l	en et al.		of normal	medical history			consu		of 7.1%,	
l	{2022)			and clinical			mption		with	
l	[6]			examination					72.2% of	
l									cases being	
l									undiagnose	
ļ									d.	
l	Emma	Interv	GOLD	Clinical history,	N=288	26.38	smokin	40 to	The	UK
l	Ray et	entio	guideline	administered			g	79	diagnostic	
l	al.	nal	FEV1/FV	questionnaires			status,	years	rate for	
l	(2021)	study	C < 0.7	and performed			dyspno		new COPD	
L	[2]			quality-assured			ea		cases in	
I				spirometry			consult		the	
							ations		participatin	
									g practices	
									was	
									slightly	
									elevated	
									elevated compared	
									elevated compared to that in	
Ŷ									elevated compared to that in control	

								practices.	
Zihan	Cross	GOLD	Chinese	N=244	8.91	Dust,	40	In Chinese	China
Pan	sectio	stage	symptom based	5		biomas	years	primary	
et al.	nal	FEV1/FV	questionnaire,			S	and	care, the	
(2021)	scree	C < LLN	micro			fumes,	above	most	
[21]	ning		spirometry,			passive		effective	
	test		peak flow			smokin		screening	
	accur		measurement			g and		strategy	
	acy					active		involves	
	study					smokin		using both	
	-					g		the C-SBQ	
						-		and micro	
								spirometry.	
Kate	Cross	FEV1/FV	BOLD	N=335	6.9	Smoki	40	This	Australia
Petrie	sectio	C < 0.7	core	5		ng,	years	analysis	
et al.	nal		questionnaire			occupa	and	proposes	
(2021)	study		spirometry, self-			tional	above	criteria for	
[7]			reported			expo		identifying	
			diagnosis			sures		undiagnose	
			C C					d COPD in	
								primary	
								care	
								through	
								targeted	
								case	
								identificati	
								on and	
								evaluation.	
Juan-	Multi	GOLD	Lung function	N=252	28.9	Smoki	35	The study	Spain
Antoni	-	standard	test, 6-item			ng	years	reveals a	
0	center		fagerstrom test,				above	common	
Riesco-	cross-		breath test, and					profile for	
Mirand	sectio		carboxyhaemogl					recently	
a et al.	nal		obin level					identified	
(2021)	cohor							cases,	
[22]	t							mostly	
	obser							men in	
	vatio							their early	
	n							sixties,	
								showing	
								mild	
								symptoms,	
								and with a	
								significant	
								and	
								extended	
								smoking	
								history.	
Marie-	CON	FEV1/FV	Questionnaire	N=193	3.94	Smoke	18 to	Encouragi	France

Christi	STA	C < lower	and health	98		rs with	69	ng	
ne	NCE	limit of	examination			а	years	spirometry	
Delmas	S	normal and				tobacc		use and	
et al.	cohor	FEV1				0		implementi	
(2021)	t	< 80%				consu		ng	
[11]	study	predicted				mption		systematic	
	-	-				-		symptom	
								screening	
								through	
								structured	
								questionna	
								ires among	
								primary	
								care	
								profession	
								als should	
								enhance	
								the	
								diagnosis	
								of	
								obstructive	
								lung	
								disease	
Matthe	Popul	FEV1/EV	Questionnaire	N-910	12 19	Exposu	18	It	Canada
w	ation	C < lower	spirometry	11-210	12.17	re to	vears	establishes	Cullada
Preterot	hased	limit of	sphomedy			cigarett	and	that 20%	
i et al	case	normal					ahove	of	
(2020)	findin	normai				smoke	above	randomly	
(2020)	a					SHIOKC		chosen	
[+]	g study							individuals	
	study							with	
								reported	
								reported	
								respiratory	
								baya	
								undiagnosa	
								d airflow	
								u annow	
								obstruction	
								COPD	
Kata M	Desia	COLD	Culius as stars	N 112	72.1	Davias	40	COPD.	Canada
Kate M	Regis	GOLD	Spirometry	N=112	72.1	Enviro	40	COPD	Canada
Jonnso	try	guideline		635		nmenta	years	patients	
n et. al (2020)	Dased	FEVI/FV				1	above	nau nigher	
(2020)	longit	C < 0.7				exposu		pre-	
[٥]	uaina					res,		ulagnosis	
	1					asthma		outpatient	
	cohor							service	
	t							utilization	
	study		1					than non-	

								COPD	
								subjects	
Mamta Ruparel	Cross sectio	GOLD standard	Spirometry, low dose computed	N=560	67	Smoki ng	60 to 75	High rates	UK
et.al	nal		tomography				years	undiagnose	
(2020)	study							a COPD	
[5]								emphysem	
								a exist in	
								lung	
								cancer	
								screening	
								participant	
								S.	
Stine	Demo	FEV1/FV	Spirometry	N=109	91.5	Cigaret	40	Subjects	US
Hangaa	graph	C < 0.7		8		te	years	with	
rd et. al	ic	GOLD				smoke,	above	undiagnose	
(2019)	study	standards				enviro		d	
[12]						nmenta		COPD	
								were	
						polluta		characteriz	
						nts		ed by a	
								bealth	
								status than	
								subjects	
								with	
								diagnosed	
								COPD.	
Kang-	Cross	GOLD	COPD	N=301	48.8	Respir	40	The model	Taiwan
Cheng	sectio	guideline	assessment test,			atory	years	swiftly and	
Su et.	nal		PEFR,			sympto	and	precisely	
al	case		spirometry			ms,	above	assesses	
(2019)	findin					smokin		the	
[14]	g					g bistom		prevalence	
	study					nistory		in COPD	
								undiagnose	
								d patients	
								assisting in	
								pinpointin	
								g	
								individuals	
								in need of	
								further	
								diagnostic	
								evaluation	
								and timely	
1	1		1			1	1	interventio	

www.jchr.org JCHR (2024) 14(2), 1158-1171 | ISSN:2251-6727

n.	 	 	-			
					n.	

3. ASSOCIATION BETWEEN UNDIAGNOSED COPD SEVERITY AND CARDIOVASCULAR RISK

COPD has a substantial impact on cardiovascular wellbeing, elevating the susceptibility to conditions like heart failure, coronary artery disease, and stroke. Closely monitor COPD patients for acute cardiovascular events post-exacerbations, emphasizing preventive measures as a central aspect of patient management [39]. Table 2 represents the impact of COPD on cardiovascular disease. The systemic inflammation associated with COPD contributes to the development and progression of cardiovascular diseases. Additionally, chronic hypoxia in COPD may lead to pulmonary hypertension, further straining the cardiovascular system. The intricate interplay between COPD and cardiovascular diseases underscores the importance of comprehensive care strategies for individuals with these comorbidities.

For the management of chronic obstructive pulmonary disease, it is advisable to employ inhaled long-acting muscarinic antagonists. Using the National Health Insurance cohort, the study found that among COPD patients aged 55 and above without a history of coronary heart disease but using inhalers, tiotropium usage was associated with a heightened risk of coronary heart disease [27]. COPD patients have a 2 to 5 times greater risk of developing cardiovascular diseases, including coronary artery disease, cardiac dysrhythmia, heart failure, and pulmonary and peripheral vascular disease, in comparison to the general population [29]. Significantly, this heightened prevalence persists even after accounting for age, smoking patterns, and other risk factors. Vascular endothelial growth factor is a crucial prognostic biomarker in cardiovascular disease, influencing angiogenesis, endothelial cell function, vascular permeability, and thrombogenicity; elevated VEGF levels are observed in COPD exacerbations [35]. Detecting COPD in heart failure necessitates continuous lung function testing, including body plethysmography, and evaluating individual risk elements such as smoking history. A single cut-off for FEV1/FVC and other parameters may not be adequate [31]. Combining LAMA and LABA for dual bronchodilation therapy does not appear to elevate cardiovascular adverse events in COPD patients [40]. In this economic analysis of a multicounty clinical trial, the 1-year costs for combined acute COPD exacerbation and revascularization or cardiovascular composite events were notably lower in all active treatment arms compared to placebo. Effective COPD management in patients with cardiovascular risk could potentially reduce the overall cost of COPD care for clinicians and payers [38]. Studies on the cardiovascular safety of the oral phosphodiesterase inhibitor roflumilast revealed a 35% decrease in cardiovascular events [42]. Premature initiation and the pace of lung function deterioration contribute to an extra rise in cardiovascular disease risk. In contrast to individuals with typical spirometry results, a constrained spirometry pattern demonstrated the most robust link with cardiovascular disease at the outset [33].

Author	Objective of research	Main findings
Jiyoung Shin et al. (2022) [27]	This study explored whether the administration of tiotropium, the initial commercially accessible LAMA, increases the likelihood of coronary heart disease in COPD patients via a nationwide cohort investigation.	 Among 5787 COPD patients, 1074 (18.6%) were diagnosed with coronary heart disease, with a mean participant age of 61.4 years. It examined the impact of LAMA medication before the initiation of LAMA or LABA prescriptions.
Anastasia Papaporfyriou et al. (2023)	This review underscores the frequency of cardiovascular coexisting conditions in individuals with COPD.	 Heart failure prevalence in COPD ranges from 7% to 42%, markedly exceeding rates in the non-COPD population. The incidence of ischemic heart disease in stable COPD patients fluctuates from 7.1% to 33%.

 Table 2: Impact of COPD on cardiovascular diseases

www.jchr.org JCHR (2024) 14(2), 1158-1171 | ISSN:2251-6727

[29]		
S. Andre et al. (2019) [35]	This paper focuses on addressing the treatment of COPD patients with concurrent ischemic heart disease, heart failure, and dysrhythmia.	 Beta-blockers are employed for cardiovascular diseases, while beta 2-agonists are used for respiratory conditions. CRP in COPD serves as a biomarker for both systemic inflammation and atherosclerosis; reduced lung function is associated with elevated CRP, indicating an augmented risk of ischemic heart disease, especially in patients with moderate to severe obstruction and heightened CRP levels.
G. Güder et al. (2019) [31]	This clinical review outlines common challenges in diagnosing COPD, heart failure, and concurrent conditions. It provides strategies to prevent misdiagnosis and ensure effective treatment.	 Establishing the severity of COPD in heart failure patients is challenging due to overlapping symptoms. Further randomized controlled trials are essential to assess the effectiveness and side effects of medical therapy in individuals with both heart failure and COPD. Beta-blockers could reduce the occurrence of pulmonary exacerbations and overall mortality in COPD, even without cardiovascular disease.
Paola Rogliani et al. (2019) [40]	This paper seeks to systematically assess the influence of inhaled therapies on cardiovascular adverse events in individuals with COPD.	 Administering monotherapy with long-acting bronchodilators, such as LAMA and LABA, has exhibited a positive safety profile in individuals with COPD. ICS and ICS/LABA combinations do not exhibit an elevated cardiovascular risk, although certain ICSs may be linked to an increased risk of pneumonia.
Frederik Trinkmann et al. (2019) [42]	It outlines the uses and possible drawbacks of frequently prescribed drugs in individuals with both COPD and cardiovascular disease.	 Antimuscarinic drugs need to be assessed considering the inherently elevated cardiovascular risk in COPD. Commencing oral steroids or using elevated doses was linked to a 3.4-fold rise in the risk of newly developing atrial fibrillation.
Sergio H.R. Ramalho et al. (2020) [33]	This review delves into present understanding and debates regarding the interrelations between lung function and cardiovascular disease.	 Prior to clinically diagnosed lung disease, sub clinically measured deterioration in lung function using FEV1, FVC, and FEV1/FVC ratio is linked to elevated risks of overall and cardiovascular mortality. The decline in the FEV1/FVC ratio (average 0.30/year in men and 0.37/year in women) was associated with a smaller left atrial internal dimension and reduced cardiac output.

4. RESULTS

4.1 PREVALENCE OF UNDIAGNOSED COPD

Reviewing studies represents the prevalence of undiagnosed COPD across different studies, regions, and populations. Figure 1 illustrates the percentage prevalence of undiagnosed chronic obstructive pulmonary diseases based on the data presented in Table 1. The lower end of the Table 1 having color wise numbers reflects the quantity of patients. The United States has the highest undiagnosed COPD occurrence, reaching 91.5% [12]. In the British Columbia, Canada the rate of undiagnosed COPD is 72.1% [8].

4.2 RISK FACTORS

Authors systematically examine the multifaceted risk factors contributing to COPD. Risk factors reveal a prominent association with cigarette smoking,

emphasizing the dose-response relationship between smoking intensity and COPD development [3,4,11,22]. The study highlights the impact of secondhand smoke exposure for a long span on COPD [1,21]. Occupational exposures to dust, chemicals, and fumes, specifically in high-risk industries, contribute significantly [5,7]. Genetic factors, notably alpha-1 antitrypsin deficiency, play a role, with recent research exploring broader genetic predispositions [15].

Identification of specific risk factors associated with undiagnosed COPD, such as smoking history, tobacco consumption, occupational exposures, biomass fuels, air pollution, family history and cooking fumes among them 88% articles consider the one of the risk factors is smoking.

Fig 1 Percentage prevalence of undiagnosed COPD

4.3 BARRIERS TO DIAGNOSIS

Exploration of barriers hindering the timely diagnosis of COPD, including patient-related factors, healthcare system challenges, and the impact of stigma on seeking medical attention.

Younger working patients might face obstacles in attending, thus being underrepresented in potentially extended appointments [2]. Limited access to a spirometer, the time-intensive process of pre and post bronchodilator spirometry within brief consultation sessions, and a lack of expertise and unfamiliarity with conducting the pulmonary function test [10].

4.4 DIAGNOSTIC TOOLS AND STRATEGIES

Evaluation of the effectiveness of current diagnostic tools and strategies, as well as potential improvements or innovations for early detection.

Spirometry stands out as the primary and widely utilized tool for COPD detection. Its prevalence in clinical settings highlights its effectiveness in assessing lung function and identifying obstructive patterns. As an essential diagnostic tool, spirometry plays a pivotal role in the timely identification and control of COPD. Several diagnostic methods aid in detecting COPD, the 6-minute walk including test, serum immunoglobulin Е levels. blood eosinophil percentages, and chest X-rays [5]. These diverse tools provide а comprehensive approach, assessing functional capacity, immunological markers, and

radiographic findings for a more nuanced understanding of COPD. The Fagerström test, questionnaires, and health examination survey tools are employed for detecting undiagnosed COPD [22]. These instruments collectively assess smoking dependence, symptomatology, and overall respiratory health, contributing to a comprehensive diagnostic approach.

4.5 EFFECT OF COPD ON CARDIOVASCULAR DISEASES

Individuals with COPD confront an increased susceptibility to developing cardiovascular diseases in comparison to the general population. Conditions such as coronary artery disease, heart failure, and pulmonary vascular disease are more widespread among COPD patients. Beta-blockers, prescribed for cardiovascular diseases, demonstrate potential in reducing pulmonary exacerbations and overall mortality in COPD, independent of cardiovascular disease presence [31,35]. Administering long-acting bronchodilators LAMA and LABA as monotherapy, including an examination of the impact of LAMA medication before initiating LAMA or LABA prescriptions, has shown a favorable safety profile in COPD patients [27,40]. COPD patients face an elevated risk of acute myocardial infarction through diverse pathophysiological pathways [34]. Subclinical decline in lung function, before clinically diagnosed pulmonary disease, is linked to elevated risks of general and cardiovascular mortality. Reduction in FEV1/FVC ratio correlates with a smaller left atrial dimension and decreased cardiac output [33]. Individuals with COPD-OSA overlap syndrome show a substantial occurrence of cardiovascular conditions, notably ischemic heart disease (36%) and hypertension (58%) [41]. More than half of patients (53.3%) encountered a cardiovascular incident within 30 days following a moderate or severe COPD exacerbation, while almost two-thirds (59.3%) suffered a cardiovascular event within 30 days after a severe exacerbation [36]. Cardiovascular comorbidities did not exhibit a greater prevalence in COPD patients in comparison to those without airflow limitation. Tobacco smoking was correlated with an increased risk, whereas exposure to organic dusts was linked to a reduced risk of significant cardiovascular comorbidities [37].

4.6 PUBLIC HEALTH IMPLICATIONS

Discussion of the broader public health implications of undiagnosed COPD and its associated cardiovascular abnormalities considering its economic burden, impact on healthcare systems, and potential strategies for prevention.

The prevalence of obesity is similar among diagnosed and undiagnosed COPD patients, and observing obesity may have limited clinical significance for case-finding strategies in COPD [6]. The combination of questionnaire and peak flow testing may result in some individuals with a COPD diagnosis being overlooked. This proportion of individuals who could benefit from treatment may have ramifications for delayed intervention and subsequent economic impacts [10]. People might avoid acknowledging their respiratory health concerns due to potential stigma related to chronic lung diseases associated with tobacco dependence. Concerns about elevated expenses, encompassing life and travel insurance, as well as prescription costs, could contribute to their hesitancy in addressing the issue [2]. Cardiovascular events are a leading reason for hospitalization in COPD patients, substantially adding to the economic impact of the disease [28]. The present findings indicate that individuals without a COPD diagnosis sought healthcare for respiratory symptoms, with a significant majority having a key risk factor-smoking. The alarming aspect is the lack of COPD diagnosis despite this prevalent risk factor, suggesting inadequate adherence to guidelines. This non-diagnosis situation results in unequal care, denying these individuals access to essential treatment and self-management support, potentially impeding disease prevention and adversely affecting their quality of life [17].

4.7 INTERVENTIONS AND RECOMMENDATIONS

Identification of interventions and recommendations for improving early diagnosis, including public health campaigns, healthcare provider education, and policy initiatives. Primary care provides an optimal environment for implementing initiatives aimed at early COPD identification and its effect on heart related diseases. This environment provides a convenient and uncomplicated identification of symptomatic patients with clinically meaningful conditions, enabling prompt intervention with currently available therapeutic measures [10]. The study revealed various health

Journal of Chemical Health Risks www.jchr.org JCHR (2024) 14(2), 1158-1171 | ISSN:2251-6727

interventions that proved potentially beneficial for participants in the program, extending beyond the new COPD diagnoses. These interventions encompassed health promotion activities like smoking cessation, dietary adjustments, and pulmonary rehabilitation, along with recommendations for additional assessments in cases of diagnostic uncertainty [2].

5. CONCLUSION

This review underscores the concealed challenges of undiagnosed COPD and its associated cardiovascular conditions, emphasizing its significant impact on individuals and healthcare systems. The insidious nature of the disease, coupled with barriers to timely diagnosis, contributes to the under recognition of its undiagnosed prevalence. Addressing COPD necessitates a multifaceted strategy, encompassing improved awareness, enhanced diagnostic tools, and targeted interventions. The consequences of delayed diagnosis are profound, urging a reevaluation of current healthcare practices. Undiagnosed COPD patients face barriers such as poor access to spirometry and time constraints during consultations. The condition significantly elevates cardiovascular disease risk, including heart failure and coronary artery disease. Beta-blockers show promise in reducing mortality in COPD, irrespective of cardiovascular disease presence. In the patient data reviewed from various papers, the average prevalence of undiagnosed COPD is approximately 27%. Subsequent research should prioritize enhancing diagnostic methods. comprehending distinct challenges among different populations, and evaluating the prolonged effects of early interventions. Unveiling the hidden burden of undiagnosed COPD is crucial for proactive respiratory health management. This review serves as a call to action for collaborative efforts among healthcare professionals, policymakers, and the public. By doing so, we can unmask undiagnosed COPD, empower individuals with early interventions, and ultimately enhance the landscape of respiratory care.

REFERENCES

 Zhang B, Sun D, Niu H et al. (2023) Development of a prediction model to identify undiagnosed chronic obstructive pulmonary disease patients in primary care settings in China. Chinese Medical Journal 136(06): 676-682. doi: 10.1097/CM9.00000000002448

- 2 Ray E, Culliford D, Kruk H et al. (2021) Specialist respiratory outreach: a case-finding initiative for identifying undiagnosed COPD in primary care. NPJ Primary Care Respiratory Medicine 31(1):1-8. doi: 10.1038/s41533-021-00219-x
- Ruparel M, Quaife S L, Dickson J L et al. (2020)
 Prevalence, symptom burden, and underdiagnosis of chronic obstructive pulmonary disease in a lung cancer screening cohort. Annals of the American Thoracic Society 17(7):869-878. doi: 10.1513/AnnalsATS.201911-857OC
- 4 Preteroti M, Whitmore G A, Vandemheen K L et al. (2020) Population-based case-finding to identify subjects with undiagnosed asthma or COPD. European Respiratory Journal 55(6):1-12. doi: 10.1183/13993003.00024-2020
- 5 Daniel J, Gupta R, Thangakunam B et al. (2023) Undiagnosed Asthma-COPD overlap among patients diagnosed as Asthma and COPD in a referral hospital India. Heliyon 9(4):1-8. doi: 10.1016/j.heliyon.2023.e14711
- 6 Caspersen N F, Søyseth V, Lyngbakken et al. (2022) Treatable traits in misdiagnosed chronic obstructive pulmonary disease: data from the Akershus cardiac examination 1950 study. Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation 9(2):165-180. doi:10.15326/jcopdf.2021.0265
- Petrie K, Toelle B G, Wood-Baker R et al (2021) Undiagnosed and misdiagnosed chronic obstructive pulmonary disease: data from the BOLD Australia study. International Journal of Chronic Obstructive Pulmonary Disease 16:467-475. doi:10.2147/COPD.S287172
- Johnson K M, Khakban A, Bryan S et al. (2020) Healthcare system encounters before COPD diagnosis: a registry-based longitudinal cohort study. Thorax 75(2):108-115. doi: 10.1136/thoraxjnl-2019-213554
- 9 Martinez F J, Han M K, Lopez C et al. (2023) Discriminative accuracy of the CAPTURE tool for identifying chronic obstructive pulmonary disease in US primary care settings. JAMA 329(6):490-501. doi: 10.1001/jama.2023.0128
- Martins S M, Dickens A P, Salibe-Filho W et al. (2022) Accuracy and economic evaluation of screening tests for undiagnosed COPD among

hypertensive individuals in Brazil. NPJ Primary Care Respiratory Medicine, 32(1):1-10. doi: 10.1038/s41533-022-00303-w

- 11 Delmas M C, Bénézet L, Ribet C et al. (2021) Underdiagnosis of obstructive lung disease: findings from the French CONSTANCES cohort. BMC Pulmonary Medicine 21(1):1-10. doi: 10.1186/s12890-021-01688-z
- 12 Hangaard S, Kronborg T, Hejlesen O K et al. (2019) Characteristics of subjects with undiagnosed COPD based on post-bronchodilator spirometry data. Respiratory Care 64(1):63-70. doi: 10.4187/respcare.06296
- Tran T V, Kinney G L, Comellas A, Hoth K F et al. (2023) Prevalence of abnormal spirometry in individuals with a smoking history and no known obstructive lung disease. Respiratory Medicine 208:107-126. doi: 10.1016/j.rmed.2023.107126
- 14 Su K C, Ko H K, Chou K T et al. (2019) An accurate prediction model to identify undiagnosed at-risk patients with COPD: a cross-sectional casefinding study. NPJ Primary Care Respiratory Medicine 29(1):1-7. doi: 10.1038/s41533-019-0135-9
- Cazzola M, Stolz D, Rogliani P et al. (2020) α1-Antitrypsin deficiency and chronic respiratory disorders. European Respiratory Review 29(155):1 -13. doi: 10.1183/16000617.0073-2019
- 16 Lin C H, Cheng S L, Chen C Z et al. (2023) Current progress of COPD Early detection: key points and novel strategies. International Journal of Chronic Obstructive Pulmonary Disease 18:1511-1524. doi: 10.2147/COPD.S413969
- 17 Axelsson M, Backman H, Nwaru B I et al. (2023) Underdiagnosis and misclassification of COPD in Sweden–A Nordic Epilung study. Respiratory Medicine 217:1-8. doi: 10.1016/j.rmed.2023.107347
- Yangui F, Touil A, Antit S et al. (2021) COPD prevalence in smokers with stable ischemic heart disease: a cross-sectional study in Tunisia. Respiratory Medicine 179:1-6. doi: 10.1016/j.rmed.2021.106335
- 19 Naranjo M, Willes L, Prillaman B A et al. (2020). Undiagnosed OSA may significantly affect outcomes in adults admitted for COPD in an inner-city hospital. Chest 158(3):1198-1207. doi:

10.1016/j.chest.2020.03.036

- Butler S J, Louie A V, Sutradhar R et al. (2023) Association between COPD and Stage of Lung Cancer Diagnosis: A Population-Based Study. Current Oncology 30(7):6397-6410. doi: 10.3390/curroncol30070471
- 21 Pan Z, Dickens A P, Chi C et al. (2021) Accuracy and cost-effectiveness of different screening strategies for identifying undiagnosed COPD among primary care patients (≥ 40 years) in China: a cross-sectional screening test accuracy study: findings from the Breathe Well group. BMJ Open 11(9):1-12. doi: 10.1136/bmjopen-2021-051811
- 22 Riesco-Miranda J A, Solano-Reina S, Rábade-Castedo C et al. (2021) Certified smoking cessation units in spain: high potential for detection of undiagnosed chronic obstructive pulmonary disease and profile of newly diagnosed cases. International Journal of Chronic Obstructive Pulmonary Disease 16:443-450. doi: 10.2147/COPD.S289097
- 23 Kwizera R, Katende A, Bongomin F et al. (2021) Misdiagnosis of chronic pulmonary aspergillosis as pulmonary tuberculosis at a tertiary care center in Uganda: a case series. Journal of Medical Case Reports 15:1-7. doi: 10.1186/s13256-021-02721-9
- 24 Spero K, Bayasi G, Beaudry L et al. (2017) Overdiagnosis of COPD in hospitalized patients. International Journal of Chronic Obstructive Pulmonary Disease 12:2417-2423. doi: 10.2147/COPD.S139919
- 25 Lu D, Yaqoob O, Kumar M et al. (2023) Intensive critical care and management of asthmatic and smoker patients in COVID-19 infection. Acta Pharmaceutica 73(1):29-42. doi: 10.2478/acph-2023-0002
- Agustí A, Celli B R, Criner G J et al. (2023) Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. American Journal of Respiratory and Critical Care Medicine 207(7):819-837. doi: 10.1183/13993003.00239-2023
- Shin J, Lee J H. (2022) Effects of tiotropium on the risk of coronary heart disease in patients with COPD: a nationwide cohort study. Scientific Reports 12(1):1-10. doi: 10.1038/s41598-022-21038-1
- 28 Shnoda M, Gajjar K, Ivanova V et al. (2021)

www.jchr.org JCHR (2024) 14(2), 1158-1171 | ISSN:2251-6727

COPD and cardiovascular disease: a review of association, interrelationship, and basic principles for integrated management. Critical Care Nursing Quarterly 44(1):91-102. doi: 10.1097/CNQ.00000000000342

- 29 Papaporfyriou A, Bartziokas K, Gompelmann D et al. (2023) Cardiovascular diseases in COPD: from diagnosis and prevalence to therapy. Life 13(6):1-17 doi: 10.3390/life13061299
- Montero A C. (2023) Cardiopulmonary axis and cardiovascular mortality in patients with COPD. Semergen 49:101928. doi: 10.1016/j.semerg.2023.101928
- 31 Güder G, Störk S. (2019) COPD and heart failure: differential diagnosis and comorbidity. Herz 44(6):502-508. doi: 10.1007/s00059-019-4814-7
- Russo P, Prinzi G, Lamonaca P et al. (2019) Flavonoids and reduction of cardiovascular disease (CVD) in chronic obstructive pulmonary disease (COPD). Current Medicinal Chemistry 26(39):7048-7058 doi: 10.2174/0929867325666180514100640
- 33 Ramalho S H, Shah A M. (2021) Lung function and cardiovascular disease: a link. Trends in Cardiovascular Medicine 31(2):93-98. doi: 10.1016/j.tcm.2019.12.009
- Goedemans L, Bax J J, Delgado V. (2020) COPD and acute myocardial infarction. European Respiratory Review 29(156):1-15 doi: 10.1183/16000617.0139-2019
- André S, Conde B, Fragoso E et al. (2019) COPD and cardiovascular disease. Pulmonology, 25(3):168-176. doi: 10.1016/j.pulmoe.2018.09.006
- 36 Løkke A, Hilberg O, Lange P et al. (2023) Exacerbations predict severe cardiovascular events in patients with copd and stable cardiovascular disease–a nationwide, populationbased cohort study. International Journal of Chronic Obstructive Pulmonary Disease 18:419-429. doi: 10.2147/COPD.S396790
- Soumagne T, Guillien A, Roche N et al. (2020) In patients with mild-to-moderate COPD, tobacco smoking, and not COPD, is associated with a higher risk of cardiovascular comorbidity. International Journal of Chronic Obstructive Pulmonary Disease 15:1545-1555. doi: 10.2147/COPD.S253417
- 38 Stanford R H, Coutinho A D, Eaddy M et al.

(2019) Cost analysis of COPD exacerbations and cardiovascular events in SUMMIT. American Journal of Managed Care, 25(11):320-325. PMID: 31747236

- 39 Müllerová H, Marshall J, De Nigris E Z et al. (2022) Association of COPD exacerbations and acute cardiovascular events: a systematic review and meta-analysis. Therapeutic Advances in Respiratory Disease 16:1-11. doi: 10.1177/17534666221113647
- 40 Rogliani P, Calzetta L, Matera M G, et al. (2019) Inhaled therapies and cardiovascular risk in patients with chronic obstructive pulmonary disease. Expert Opinion on Pharmacotherapy 20(6):737-750. doi: 10.1080/14656566.2019.1570133
- 41 Shah A J, Quek E, Alqahtani J S et al. (2022) Cardiovascular outcomes in patients with COPD-OSA overlap syndrome: a systematic review and meta-analysis. Sleep Medicine Reviews 63:101627. doi: 10.1016/j.smrv.2022.101627
- 42 Trinkmann F, Saur J, Borggrefe M et al. (2019) Cardiovascular comorbidities in chronic obstructive pulmonary disease (COPD)—current considerations for clinical practice. Journal of Clinical Medicine 8(1): 1-14. doi: 10.3390/jcm8010069