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KEYWORDS ABSTRACT:
In this paper, we discuss about the existence, uniqueness and continuation of Caputo type Variable
Variable Order Fractional Order Fractional Delay Differential Equation (VOFDDE)

Delay Differential I [CCHD] _(0tys(t) y(O)=F(ty()y(t-1),0<s()<1@y(H)=y 0 at t=0,yER,tE(0,00))
Equation (VOFDDE),
Existence—Uniqueness,
Continuation theorem,
Ulam—Hyers stability.

We extend the continuation theorem for the variable order fractional delay differential equation and
then we present different types of Ulam—Hyers stability results for the Caputo type VOFDDE

1. Introduction

Because of the wide applications in the fields of science and engineering [1, 12, 13, 15] fractional calculus has broadened
over the past few years. In recent times, the study about the Fractional differential equation has much interest [16, 17, and
18]. Variable-order fractional differential equations with delay are a relatively less known branch of mathematics that
offers remarkable opportunities to simulate interdisciplinary processes. The existence and uniqueness of the differential
equation plays a vital role in the theory of differential equations. In this paper we discuss about the existence, uniqueness
and stability of variable order Caputo type Fractional Differential Equations with Delay. In variable order, the order can
vary continuously as a function of dependent or independent variable.

Consider the Caputo type VOFDDE initial value problem as

{cDé,it)y(t) = F(t,y(8),y(t —1)),0 < s(t) < 1 an
y(t) =y, att =0,y € R, t € (0,0) :

Where CDS,(P (.) is the Caputo derivative with the variable order s(t) defined in (2.3).

2. Preliminaries
In this paper, we focus on the variable order Caputo derivative. We obtained the fractional derivative and integral with
the variable-order with delay by extending the fractional derivative and integral of the constant order [1, 2, 3, 4, and 14].

Definition 1: [5]
The variable order Riemann—Liouville integral of function f(w) is

DoV f (W) = s 3w = SO (dA, > 0,5(6) > 0 2.1)

Definition 2: [5]
The variable order Riemann- Liouville derivative of function f (u) is defined as

dn ct — -
reDePf(u) = r(n_ls(n)ﬁ Jo u =01 f(D)dA, t>0,5(t) >0 (2.2)
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Definition 3: [5]
The variable order Caputo derivative of f (u) is
D fw) = Jy =25 fFMQA)dA, t>0,5(8) >0 (2.3)

r(n- S(t))

Definition 4: [5]
The derivatives (2.2) and (2.3) are not often equivalent; however, they can be linked by the following relationship [6]

HO) _ vn-1 P 0)tks® s()
rDoe f(O) = Xkzo T sy = cPoe (O (2.4)

When 0 < s(t) < 1, then the relation between (2.2) and (2.3) can be defined as
Dot f(8) = D5 L (©) = £(0)) (2.5)

Lemma 1: [2, 3, 6].
We assume that f (x,t) is a continuous function. Then the second kind of nonlinear Volterra
Type equation here.integral equation is equivalent to variable order initial problem (1.1) as

V() = Yo + 7 [y (6 = DO F (L y(R), ¥ (A~ T))dA (26)
then every solution of (2.6) is also the solution of (1.1) and vice versa.
Proof:

By applying the operator g, D, S(t)f(u) to both sides of (1.1), and using (2.5) and the initial condition y(t) =y, att =
Ol
RLD_S(t) S(t)y(t) RLD_S(t)f(t' y(©),y(t—1)

V() —yo = m j (t = DO, y(A),y(A - D))dA

1t »
YO =30+ o fo (t = DSO-LF 2, y(A), y(A — 1))dA

We can reduce the problem (1.1) into the equivalent Volterra nonlinear integral Equation (2.6). The proof is complete.
Lemma 2: [5, 7, 8].

Assume that S < C[0,T]. Then S is called pre-compact if {y(t) : y € M} is uniformly bounded and equicontinuous on
[0, T].

Lemma 3: [5, 7, 8].

Suppose that X is a Banach space, and S < X, where S is the closed bounded convex set, and assume that T : S — S'is
the continuous completely. Then there exists a fixed point of T in S.

Lemma 4: [5, 7, 8].

Suppose that a non-empty closed set S is a subset of a Banach space X, and assume that a, =0,
then Y. a, converges for all n € N. Further if we assume A4: S — S satisfies

[ Pryy — Py, || < -2y vz €5.

Then, for any u* € S is defined the unique fixed point of P.

3. Theorems on Existence, Uniqueness, and Continuation
First, we prove the local existence and uniqueness of the solution of (1.1) by using the following hypothesis.

Hypothesis 1 (H1):
Assume that f : [0,+00) x R = R in (1.1) is a continuous function. Then the function f fulfills the Lipschitz’s
condition,

ie, [f(t,y) — f(t,y2)| < L|ly; — y,|, whereL > 0.
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Hypothesis 2 (H2):
Assume that the function f have weak singularity, with respect to ¢ then there exists a constant n €(0,1] such that
(3@ = t"f(t,y(t),y(t — 1)) is a continuous bounded map defined on [0,T] x [0,T],and T > O.

Theorem 1:
Assume that conditions (H1) and (H2) are hold. Then (1.1) has at least one solution and y € C[0,h*], for some h* €
(0,7]
Proof
= : — = — <
LetQ = {y € C[0,T]: |y — yo ||C[0_T] Sup ly —yo 1< @}

Where ¢ > 0. Because J is bounded, so there exists a constant N > 0, such that
sup {l (3y)(®) I:t € [0,T],u € Q} < N.

If we take

Apr = {y:y € C[0,R7], sup |y —y,I< <p}

te[o,T]

where h* = min {(%)5@ ! T} s(t) >n.

It is trivial that A~ < C[0, h*] is bounded, closed, nonempty, and a convex subset.
Andalso h* <T.

Define & as
(Ry)(®) =y, +
This gives
I(xy) () — yp I< % Jy(t =251 17 da < %hs(ﬂ—n
S N =—m) el +1-m)

“ris@®+1-n" Nrl-n)

Thus

I(xy)(©) — yo IS @, for any y € C[0, "],

which shows that ®A, C Ay,.

To prove the continuity of operator &, we proceed as follows.
Lety,,y € Ay suchthat ||y, — y||C[0,h*] —»0asn — oo,

[y (& = 5O F (A, y(2), y(A - )dA, t € [0,h"] (3.1)

1
r(s(t))

since the operator 3 is continuous we have || 3y, — 3y || ., > 0 asn — oo.
Now

[ (v)(® = () O |

P(s(t))f (t = " O7LF (4, 3, (1), YA — 1))d2

G (t»f (t = D*Of @2, y(2),y(4 ~ 1))da

1 ’ -1
< mjo -2 © Lf A YD),y (A =1)) = f(A,y(A),y(A — 1)) | dA

1 L X
= r(s(t))fo (t = DO | (Fy)A — (3p)A | dA

1 t
< —_ s(t)-13-7 o e~
=TGsM) JO (£ = DO Qv A = (VA 42
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Thus,
r(@-se)

_ _ M TN ps()-1 o~ [
1 69)® = (Ol gy < Tz 1 =y B N @2 = @A
| (xy)(® = () || opr > 0asn =
Hence X is continuous.
Next we prove the continuity of XA}, as follows.
For thiswe lety € Ay and ty,t, € [0,h*],t; < t, andfor any & > 0,

ra—-mn

t—A)O 1A Mdl = ——————
r(s(tnf =D TGO +1-2
Then there exists a7 > 0, such that

tsO" - 0,ast —» 0*,wheren € [0,1).

F(s(t))f =)0 1 mdr<e  te[0,h]

holds, so that for t, t, € [0,7] we have

1 t1 N1 1 ty o
rG@) f (0 = D" O Ay, y(A =) dA =~ s f (t2 = DO (4, y@), y(A - D)) dA

N t N t;
Tre(+)) —2)s®O-1 3~ S — s(H)-1 35—
STy, @O A s | -0

<e (3.2)
Forl<t <t,<nh

(%) () — (Ry) (&)

1 t

= mfo (t, _A)S(t)_lf(l.y(l),y(l _ T)) ai
t2

_ ﬁfo (t; — D)SO1F(4,y(D),y(A — 1)) dA

Adding and subtracting mfotl(t2 — D*O-1£(2,y(4),y(A — 1)) dA, then simplifying the above equation, we get

t1
|(xy) (1) = (xy) ()] < ‘r(%(t)) f [(t; — D)SO~T — (t, = DO F(4,y(D),y(A — 1)) dA

+ [ramy J 6 = DO (2 y D),y (2 - ) d/1| (3.3)

The first term of (3.3) can be expressed as

|F(51(t))fo 1[(t1 — D3O — (£, — 1)SO-1£(1,y(A), y(A = 1)) dA|

t1
(t; = SO — (£, — 1)5O-] | 177 | dA

“rlh |

S)=n rta
t; — D)SO-1 — (¢, — 15O | 177 d/1+2—f t; — DSO-1 — (¢, — 1)5O-1] | dA
F((t))f[(l O~ O a4 | = 07 = =
v (s \SO1 NE-1 (-2 =20, ey
sr(s(t))foz (5—/1) A+ (t))[ - ]\g
v (B VO
<= _["(2-2 A7 dA
r(s®)Jo (2 >
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N (g_) -0 s(t) il s(t)
_ _ s(t) n
+ F(S(t)) [0+ (t; — ) + <t1 ) ( 2)
N (ﬁ) B s(t) 7\ S©
— s(t) _ n
<e+—~~— HEC )) [(t, —t)5® + (t ) ( 2)
The second term of (3.3) can be expressed as
r(s(t))f (6, = DO (A, y(D),y(A - 1)) dA| F( (t)) f (t, — 1)S®O-1 43
N("l) ( )S(t) y
=Gy 70 (3.4)

Hence there exists
g>ﬁ>0forgSt1 <t,<h"and |t; —t, I<7; such that

I(xp)(t) — (xy) (&) 1< 2¢ (3.5)
Conditions (3.2) and (3.5) implies that {( xy)(t):y € h*} is equicontinuous and uniformly bounded since 8/« < A~
Therefore A, is pre-compact and hence the operator & is completely continuous. It gives the local existence of (1.1) by
using Lemma 2 and 3.

Theorem 2:

Assume (H1) and (H2) are fulfilled. Then there exists the unique solution of IVP (1.1) foru € C[0,h*],where h* €
(0,T].

Proof: Using Lemma 1, (1.1) and (2.6) are equivalent. It remains to prove only that (2.6) has one solution only. First, we
have a non-empty and closed subset of the Banach space in the form

Ay = {y:y € C[0,h*], sup |y —y, IS <p},
tefo,T]
We use the operator x as
(9)© = yo + gy Jo (€ = D*O 7,y y(A ~ D)dA, ¢ € [0,h"]

we obtain the fixed point problem from the uniqueness of the solution to (2.6),

e,y = (xy)(0).
So, it remains to prove that x has a unique fixed point.
We have

169)0 =30l = 5 [ €= DOy, y@ =Dl da

Ifllcropy (A =s(@) @I(s(©)+1—n)
a r@—mn) I TcionT (1= s(®) ~
Hence Ry € Ap+, if y € Ap~
(%) () — (Ry) (&)

t
= F(s;(t))fo (t; — DO 1F(4,y(D),y(A — 1)) dA

@, foranyy € Ap:

1 t2
Tl — 2)s®-1 B
r(s®)Jo (t, = DO (4, y(D),y(A - 1)) d2

1 t1
o)) —)SO-1 _ (¢, — 1)s®-1 B
SI“(s(t))fO [(t; —A)s¢ (t, — )sC ]|f(/1,y(/1),y(/1 T))|dl
1
— s(t)— _
F( ) J;, (tz DSOF(4,yD),yA—1))|da

502


http://www.jchr.org/

Journal of Chemical Health Risks

www.jchr.org

JCHR (2024) 14(2), 498-509 | ISSN:2251-6727

£ 1l cro,ne
=TGO) J,

On integrating we obtain
171l cpo,n
|G (&) = (9) (@) < p i [t = 650 + () = (6)°]

r(1+s(t))

1 1l cron

(62 = DO — (6 = DO aA + e B

tz
(t, —2)s®O-143
t1

This shows that &y is continuous.
Also, we have

< @O - .
||x y— y” o] m ly — ¥llcio,ep, for everyn € Nand t € [0,h7]. (3.6)

Forn = 0, (3.6) is true.
By the fundamental concept of induction, the case n — 1 is also true. We get

n n_ n-—1 n—-1_

||N y—X y|| = ||N(N y) = X(R y)||
clo t] cloyt]
1
s(t)-1 — —
(@) f @ — O [f (/1 X Ty@Tya r)) FAX" TN 50— ) d/1|
The result (3.6) is obvious by the Lipschitz’s condition and the induction hypothesis.
Also,
yroo s (L&)
n=0 1"(1+ns(t)) Ese !

7k

Here E;(.) is the Mittag-Leffler function, defined as E;(z) = Y-, P
Hence, we can apply Lemma 4 and deduce the uniqueness of equation (1.1).

Theorem 3:
Assume (H1) and (H2) are hold, theny = y(¢t),t € (0,7) is non-continuable if only for some ¢ € (0,{/2) and any
bounded closed subset X < [¢,+o) x R then there exists
€ [¢,{), such that (t*,y(t*),y(t* — T)) ¢ X.
Proof:
We explain the proof in two steps.
Let there exists X < [g,,+0) X R and {(t,y(t),y(t —1)):t € [¢,{)} < X.
The compactness of X = { < +oo. By (H1) there exists a positive K such that

sup |f] <K.
(ty)ex

Step 1: To prove tllr(l’l y(t) exists.
Let G(t) = [(t — D*O~1AdA,  te 2]

G (¢t) is uniformly continuous on [2¢, ¢]. For all ty, t, € [2¢,{] witht, < t, we have

1 (4
_ N —_ Nst)—- _
() =Y = [y j (t, — O£ (4, y(), yA - 1)) dA

1 tz
- — s(t)-1 _
r(s®) fo (t; = DO f(2,y(D),yQ - 1)) dA
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1 s
— —)s®-1 _ _ N\s()-113-
S|F(S(t))fo[(t1 DO = (6, =) 1]M(sy)(ﬂ)dz|

1 t1
() —A)SO-1 _ (¢, — 1)sO-1 _
+|r(s(t>)f [(tr = D¥O = (£, = )*Of(4,y @),y T))da‘

1
— 1s-1 _
|F(s( N, (6, = DO (4, YD),y ‘[))d,l‘
I3¥ 101 [* _ ays(H)-1 _ a\s(H-177- L ty o o
- F(s(t))f“[(tl Y =" ]A"da+r(s(t)) J; [(t,— D) (t, — A ]da
K
— s(t)-1
r( ©) )., (tz A)sO-1dz
lesy” Og

<16(t) — G(t2)

F( (t)) + F( (t)) [2(t, — t1)s(t) + (t; — C)s(t) —(t, — g)s(t)]

Since G(t) is continuous and by Cauchy’s Convergence criterion, it follows that
tlirzrl y(t) = y* exists.

Step 2: Here we will prove that y(t) is continuable.

Since X is a closed subset, (¢, y*) € X.

We have y(¢) = y* and y(t) € C[0,¢], we define the operator O as follows

G2)(t) =y, + r( (t))f (t —D)*O-1F (A, z(A), z(A — 7))dA, where
V1= Yo+ m fo (¢ = O£ (2, 2(), 2(A - ))dA

where z € Cl¢,¢+ 1] and t € [¢,¢ + 1]
LetW, = {(t,2):t € [g,¢ + 1], Ix| < max |y, ()| +a}
te[¢,c+1]

Since f is continuous on W, we have M = hax If(t,y@®),y(t—1).
Z a
Let W, = {z € Clg,¢ + 1]: _max [z(t) — y,(t)| < a,2(5) = y,(5)}
te[¢,c+1]
. M s(®)
Where h* = min {1, (m) }
Thus © is completely continuous on W,. Set {z,} € C[¢, ¢ + 1], ||z, — zlljc.c+1] = 0 as n — oo. Then we have

¢
1(62,)(t) — (62)(®)|| = |ﬁ f (t = SO [F(X 2,0, 2, (A — 1)) — f (4, 2(D), 2(A — 1))]dA

< W@ T (2@, 22— D) = f(A, 20,20 = D) (e
Since f is continuous ||f (4, z,(1), z,(A — ©)) — f(4,2(2),z(A — r))||[“+h*] > 0asn - o.

Hence, [|(6z,)(t) — (02)(t)|l(¢c+n1] = 0 as n — oo shows that © is continuous.

Now, we will prove 8W,, is continuous For any z € W,,, we have (62)(¢) = v, (¢) and

102)(6) - yi] = f (t = DO (A, 2(0), 24 — D)dA — 1

TG (t))
- e t(t - O, 0,50 - D)
r(s®) S

M(t g.)S(t‘) - h*S(t)
T r(s()+1) " rs@+ 1)
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Thus, OW,- € Wy~. If we set £(t) —r—(t)fc(t NSO-1£(2,z(1),z(A — 7))dA. We have £(t) is continuous on

[¢,¢ + 1]. Forall z € W+, ty,t, € [, ¢ + h*], we have
1(62)(t,) — (02)(¢,)|

< F( (t))f [(t; — A)5O-1 — (¢, — 1)sO- 1]f(l z(1), z(A —r))dl’

— — )s®O-1 _ _ 1\s(H-1 _
" r(s(o)f [(t = DO = (1 = DO f(2,2(D), 2 r))d/l‘

+

! -1 3
F(s(t)) . (tz —)5O-1£(3,2(2),2(2 T))d/1|

< 8,(8) — £ ()| + ) [2(t; — t)5O + (8, — )5 — (¢, — ¢)*?P]

M
r'(s(t)+1
Since £(t) is uniformly continuous on [¢, ¢ + h*] and from (3.5) we conclude that {(6z)(t): z € W;-}is equicontinuous.
Thus © is continuous completely. Hence by Lemma 3, the operator © has a fixed point y(t) € Wy that is

YO =y + o [ = DO AW, yA-D)dA, t€lgg+h] (36)

1 ‘ -1 Se\ o
Yo+ TG fo (¢ = DSO-LF 2, (2, 7 (A — 1))dA

—1 t t)— — —
YGO) fg (t = DO F (A, y(A = 1)dA

1t . o =

trs j (¢ = DSOLF (4, 7(A), T4 - 1))dA
.~ _ | y(t)whent € (0,q]

Where y(t) = {y(t) whent € [¢,¢ + h*]

It follows that y(t) € C[0,¢ + h*] and

PO = Yo + re o € = DO I, 7 — D)dA @37
By Lemma 1, ¥(¢t) of (3.7), is a solution of (1.1) on (0,¢ + A*].

This is a contradiction to the fact that y(t) is non-continuable.

Hence we proved the required result.

4. Global Solution

Theorem 4:

Assume that Hypothesis 1 holds. Consider y(t) is a solution for (1.1) on (0,¢). For € > 0, and if y(t) is bounded on
[£,¢), then ¢ = 4oc0.

Lemma 5: [9, 10]

Let r be a real valued function defined on [0, 8] x [0, o).

Assume that there exists ¢ > 0 and s(t) € (0,1), such that r(t) < q(t) + cf rd

0 (t-2)s®
where q(t) > 0 is a locally integrable function in [0, 8]. Then there exists h = h(s(t)), such that for t € [0, 8], we have

r(0) < q(®) + he ) -5 dA.

da,

Theorem 5:

Assume that (H1) holds and consider three continuous functions h(t), i(t) and j(t) defined on [0, )X[0, o), such that
If (&, y(@),y(t —D)| < h@®)i(ly]) + j(t),where i(s) < s for some s € [0,00). Then there exists a solution of (1.1) in
C[0, ).
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Proof:
We can easily conclude the local existence of the solution of (1.1) by using Theorem1.
By Lemma 1, y(t) satisfies the following equation

Y(®) = Yo + 1 Jo (6= DO A,y (@), y(A ~ D)dA.

Let the maximum interval of y(t) as [0, ¢), where ¢ < .
Then

ly@®| =

1 ‘ t)—1
Yo+ TG f (t = DSO-LF L, y(A), y(A — 1))dA

1
=Yt T60m)

<y + o) [yt = O (R |yl)dA + —— [ (t — 2O~ j(A)dA.

f (¢ = DO (h(A) i(lyD) + j(A)dA
0

r(s(t)) r(s(t)
By taking
_ _ 1 t _ t)-1; _ ”h”[o_g)
r@® = ly®l q®) = yo + 555 Jo (¢ = D*O7j(DdA and ¢ =720

by Lemma 5, r(t) = |y(t)| is bounded on [0,¢). Thus, for any € € (0,¢),y(t) is bounded on [g,¢). By theorem 4, the
solution of (1.1) exists on (0, o).

The following theorem ensures the existence and uniqueness of the global solution of (1.1) on R*.

Theorem 6:

Assume that (H1) holds, and a continuous function p(t) > 0 exists and defined on [0, ), such that |f (¢,y) —
f @& <p)]y —yl|, then unique solution of (1.1) exists in C[0, o).

5. Ulam Stability Results
Let us consider the Ulam stability for (1.1) as follows. Let £ > 0 and ¢ be a continuous function defined on [0, ) —
R*. Now, Consider the following inequalities:

| DsPy(®) — FEy®), ¥t — )| <e (5.1)
| D§Ly(®) = F(ty(0), y(t — )| < 9(D) (5.2)
| DSPy(®) — £y, ¥(t — )| < e(D) (5.3)
Definition 5:

The Initial value Problem is Ulam-Hyers Stable, if there its a real number ¢; > 0, such that for each £ > 0 and for each
solution y € C[0, o) of (5.1), there exists a solution z € C[0, ) of (1.1) with [y(t) — z(t)| < ec;

Definition 6:
The Initial value Problem is Ulam-Hyers Stable, if there is a real number ¢; € (R*, R*) with c;(0) = 0,foreach e > 0
and for each solution of y € C of (5.2), then there exists a solution z € € of (1.1) with |y(t) — z(t)| < &c;.

Definition 7:

If there is a number ¢; , € R*, for each & > 0 and for each solution of y € C of (5.3), then there exists a solution z € C
of (1.1) with [y(t) — z(t)| < &cj,@(t), then IVP (1.1) is Ulam—Hyers—Rassias stable, with respect to ¢.
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Definition 8:
If there is a number c;, € R*, for each £ > 0 and for each solution of y € C of (5.2) then there exists a solution z € C of

(1.1) with [y(t) — z(D)| < ¢j,9(t), then IVP (1.1) is the generalized Ulam—Hyers-Rassias stable, with respect to ¢.

Hypothesis 3: [H3]
If we assume ¢ (t) is an increasing function and ¢ € C[0, ) then there exists x,, > 0, such that

1 t _ -1
@y o E =D 07e(DdA < xp0(0),  tE[0,00)

Lemma 6: [11]
Let x(t)and y(t) be a continuous function defined on [0,T] % [0, ) where T < o,

If y is increasing and there are constants 4 = 0 and p = 0, such that
t

x(t) <y@®) + uf (t —DP 1x(D)da, te[0,T),
0
Then

‘O (Ul ()
=y + 2.
If y(t) = cisaconstantont € [0,T) , then we have
x(t) < cE,(ul'(p)t?),t € [0,7),
where Ey, (+) is the Mittag—Leffler function.
Theorem 7:
If (H3) is satisfied, then IVP (1.1) is the generalized Ulam—Hyers—Rassias stable.
Proof:
Suppose that u is a solution of (5.2) on C[0, =), and we assume that z is a solution of (1.1). Thus, we have

y(t) — yo(t) — m fo (= DSOFA,y(),y(a - r))dl‘

(t = DPy(1)da, te[0,7).

1t »
S o) fo (t - D OLp(DdA < x,0()

From the above relations, it follows that

t
ly(®) —z(®)| < |y(®) —yo(t) — ﬁf (£ — D)SO-1F (A, y(A), y(A — 7))dA
0
1 t .
E0) f (¢ = DO (F(Ay A,y = D) = (F(2,2(D),2(2 = D) d

< Xp@(®) + f; (t = D¥O-1y(2) — 2(2)| dA.
By Lemma 6, there exists a constant L* independent of )((p(p(t), such that
ly(®) —z(®)| < L"x,9(t). Hence proved.

6. Example

We verify our result by means of the following examples
Example 1:

Consider the following 1\VVP of VOFDDE

s _ _ly@-ol
cDor y(t) = —7(1+|y(t)|4),0 <s(t) <1

Yo =0,y ER,t €(0,2)

(6.1)
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1
with s(t) = 12 (8 + 3t).

ly(t-7)l
7(1+ly(O1*)

Also, | £(t,y1) = f(£,Y2) IS L1 y1 =y, | with L =2> 0.
Here £(t, y(t), y(t — 7)) satisfies (H1) and (H2). Hence the IVP (6.1) has a unique solution.

Example 2:
Consider the following IVP of VOFDDE

{CDS,E”y(t) = |tle + tsin(t — 2),0 < s(t) < 1
¥o =0,y €R,t €(0,1)

In this example the function £(t,y(t),y(t — 7)) = is continuous with respect toy € R.

(6.2)

with s(t) = 0.51 + 0.49¢t.
This also satisfies (H1) and (H2). Hence the IVP (6.2) has a unique solution.

7. Conclusion
In this paper we give the local existence and uniqueness theorems for the equation (1.1). Also, we proved the
continuation theorem to establish the global existence of VOFDDE.
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