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ABSTRACT: Deltamethrin has magnificent potential for agricultural pest control. The penetration of deltamethrin 

into aquatic ecosystems can endanger the life of aquatic organisms. In this study, common carp (Cyprinus carpio) was 

exposed to the sub-lethal concentrations of deltamethrin (0.0, 6, 12, and 18 µg L-1) for 30 days. Then, the biochemical 

parameters of blood and the biomarkers of oxidative stress in fish were evaluated to assess the toxic effects of 

deltamethrin. Based on the results deltamethrin exposure altered antioxidant enzyme activities (superoxide dismutase, 

catalase, glutathione reductase, glutathione peroxidase, and glucose 6-phosphate dehydrogenase) and increased lipid 

peroxidation and protein carbonylation rate in hepatocytes. However, the course of these changes was dose-dependent 

to deltamethrin. There was a significant reduction in the total antioxidant and glycogen contents in the hepatocytes of 

fish challenged with deltamethrin. Conversely, exposure of C. carpio to deltamethrin increased aspartate 

aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, creatinine phosphokinase, alkaline 

phosphatase, and lactate dehydrogenase activities. Deltamethrin significantly inhibited butyrylcholinesterase activity 

and declined total protein and globulin levels. However, glucose, creatinine, cholesterol, and triglyceride levels 

significantly increased in the plasma of C. carpio exposed to deltamethrin. Therefore, these findings demonstrated the 

potential of deltamethrin to induce cytotoxicity in fishes by disrupting cellular homeostasis and producing reactive 

oxygen species-induced oxidative stress.  

 

                       INTRODUCTION 

Pyrethroid pesticides are most commonly used to control 

plant pests in the world [1]. Compared to organophosphate, 

organochlorine, and carbamate pesticides, pyrethroids have 

high bioavailability, low half-life, and lower toxicity. 

Deltamethrin is one of the most well-known pyrethroid 

esters, widely applied to control agricultural pests, preserve 

crops in silos, and kill insects and wild fish in aquatic 

ecosystems [2]. Although deltamethrin is moderately toxic 

to birds and mammals [3], it is highly toxic to fish and 

amphibians [4].  

The lipophilic properties of deltamethrin and its 

metabolites cause this insecticide to rapidly penetrate into 

biological tissues [5]. Therefore, this pesticide may easily 

enter the the body of fish through the skin, gills, and 

digestive system and penetrate vital organs and nerve tissue 

through the circulatory system [4]. 
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Deltamethrin may be biodegraded in hepatocytes to 

facilitate its excretion from the body [6]. However, its 

metabolites and part of the parent substance may 

accumulate in the aquatic organisms [7]. Consequently, the 

bioaccumulation of this pesticide can endanger fish health 

due to the deficiency of the deltamethrin detoxification 

system in aquatic animals compared to mammals [8].  

Deltamethrin is used in agricultural activities worldwide. 

Thus, deltamethrin may enter aquaculture ponds through 

the drainage of agricultural farms and surface runoff.  

Toxicology reports showed that deltamethrin residues in 

surface waters and sediments ranged from 0.73ng L-1 to 

24μg L-1 and 8.27 to 473ng g-1, respectively [9, 10]. 

Therefore, the overuse of deltamethrin in agriculture can 

severely threaten the aquaculture industry. In addition, the 

contamination of agricultural products with deltamethrin 

can affect consumers' health, including farmed fish [11].  

It should be noted that deltamethrin is highly toxic to 

aquatic organisms; for example, the acute toxicity of 

deltamethrin was reported 0.449 µg L-1 in Macrobrachium 

rosenbergii [1], 31.51 µg L-1 in Poecilia reticulata [12], 

1.94 µg L-1 in Channa argus [6], 14.6  µg L-1 in 

Oreochromis niloticus [13], and 7.33 µg L-1 in C. punctatus 

[14]. 

Fish blood in the gills is in direct contact with the aquatic 

environment, thus any change in biochemical parameters 

can reflect an alteration in the living conditions of the fish. 

Hence, the blood biochemical parameters of fish could be 

used as a biomarker to indicate the health status of fish and 

water quality. Some studies evaluated the effects of 

deltamethrin on blood biochemical parameters in C. argus 

[6], Clarias gariepinus [15], Catla catla [16], and C. 

punctate [17].  

Literature reviews demonstrated that reactive oxygen 

species (ROS) production is the root of all pathological 

injuries in fish exposed to pesticides. The interaction of 

ROS with vital macromolecules, oxidative stress, 

disruption of cellular biochemical reactions and disturbance 

in cellular homeostasis, genetic mutations and gene 

damage, induction of apoptosis, changes in blood 

biochemical parameters and histopathological damages 

were reported in treated organisms with deltamethrin. 

Oxidative damage was also found in C. argus [18], 

Macrobrachium nipponense [19], and Eriocheir sinensis 

[20] exposed to deltamethrin. Hong et al. [20] investigated 

genotoxicity biomarkers in the Chinese mitten crab, E. 

sinensis, after exposure to deltamethrin. Changes in the 

expression of various genes were reported in common carp, 

C. carpio [21], and giant freshwater prawn, M. rosenbergii  

[1]. 

Therefore, it is hypothesized that exposure of fish to 

deltamethrin may lead to the disruption of cellular 

homeostasis and cytotoxicity. Hence, this study was 

focused on examining the effect of the cytotoxicity of 

deltamethrin on fish. More precisely, the current study 

aimed to evaluate the toxic effect of deltamethrin on 

biochemical parameters and oxidative stress in common 

carp (C. carpio) as a laboratory model. 

MATERIALS AND METHODS 

Insecticide 

Deltamethrin (EC 2.5%) was purchased from Gyah-Corp 

Company, Iran. The deltamethrin stock was prepared by 

mixing commercial formulation with distilled water. 

Fish 

Juveniles common carps (C. carpio) were obtained from a 

local farm (Shiraz, Iran). The fishes were acclimated for 

two weeks in twelve tanks (100 L) equipped with aerators 

containing dechlorinated tap water (dissolved oxygen 

6.5±0.5 mg L-1; temperature 24±2 °C, pH: 7.5±0.2, and 

photoperiod period: 16 light/8 dark). Fish were fed with 

commercial fish feed (Bayza Feed Mill, Iran). The proposal 

and all methods were reviewed and approved by the Ethics 

Committee on Animal Use of the Faculty of Basic Science, 

Marvdasht Branch, Islamic Azad University, Iran 

(162251822-IAU). 

Experimental design 

After adaptation, common carps (C. carpio) were 

distributed in twelve tanks (In 4 experimental groups, each 

with three repetitions (4×3)) and exposed to different sub-
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lethal concentrations of deltamethrin (0.0, 6, 12, and 18 µg 

L-1 which were equal to 0, 5, 10, and 15% of the 96 LC50 

value: 126.11 (90.57-175.60 µg L-1)). Thus, each tank 

included 12 fish. The sub-lethal concentrations of 

deltamethrin were selected based on a previous study [21].  

At the end of the experiment, twelve fish were randomly 

caught from each treatment and anesthetized with a 

decoction of clove powder (150 mg L-1). Then the blood 

sample was collected from the caudal vein using a syringe 

containing anticoagulants and centrifuged at 6000 rpm for 

15 min at 4°C. Next, the plasma was separated and kept at -

26 °C until the biochemical analyses followed by 

autopsying the fish, and removing the liver tissue. The liver 

was then washed immediately with a 0.9 g L-1 saline 

solution, frozen in liquid nitrogen, and placed in the freeze 

at -80°C until the biochemical analysis. 

Biochemical parameters assay 

The aspartate aminotransferase (AST), alanine 

aminotransferase (ALT), gamma-glutamyltransferase 

(GGT), alkaline phosphatase (ALP), lactate dehydrogenase 

(LDH), and creatine phosphokinase (CPK) activities were 

estimated by the calorimetric technique of Moss and 

Henderson [22], describing the instructions for Pars 

Azmoun biochemical kits. Butyrylcholinesterase (BChE) 

activity was determined using butyrylcholine as a substrate 

following the method described in the Pars Azmoun 

biochemical kits [23]. Further, glucose [24], cholesterol, 

triglyceride [25], creatinine, total protein, and albumin [26] 

were measured by spectrophotometer methods as described 

in the instructions for Pars Azmoun biochemical kits. The 

globulin was estimated following the formula [27]: Total 

protein – albumin = globulin  

Oxidative biomarkers 

Superoxide dismutase (SOD), glutathione peroxidase 

(GPx), glutathione reductase (GR), and glucose 6-

phosphate dehydrogenase (G6PDH) activities were 

measured by applying the technique in the biochemical kit 

instructions purchased from the Biorexfars Co., Iran. 

Moreover, catalase (CAT) activity was determined using a 

hydrogen peroxide solution as a substrate [28]. The total 

antioxidant contents were estimated following the ferric 

reducing ability of the plasma (FRAP) procedure using 

TPTZ (2,4,6-Tris(2-pyridyl)-s-triazine) as a substrate [29]. 

Additionally, malondialdehyde (MDA), a lipid 

peroxidation metabolite in the hepatocytes, was assayed by 

thiobarbituric acid as a substrate [30]. Similarly, carbonyl 

protein content in the hepatocytes was measured using the 

procedure in the biochemical kit guidance acquired from 

the KiaZist Co., Iran. Finally, glycogen content in the 

hepatocytes was determined by employing the method 

described in pervious research [31].  

Statistical analysis 

All data were subjected to statistical analysis using One-

Way ANOVA to manifest the variation between different 

trial groups using Graph Pad Prism 8 software. The 

Shapiro-Wilk test was used to check the normality of the 

data. Statistical differences between different experimental 

groups were expressed at a confidence level of 5% (P < 

0.05). Different letters of the alphabet explicitly showed a 

significant difference between the experimental groups (P 

<0.05).   

RESULTS 

The results of enzyme activities in plasma are illustrated in 

Figure 1. Based on the data, the activities of AST, GGT, 

and CPK in the plasma of C. carpio exposed to different 

concentrations of deltamethrin were higher than in control 

groups. After exposure to 12 and 18 µg L-1 deltamethrin, a 

significant increase in ALT, ALP, and LDH activities was 

detected in the plasma of C. carpio (Figure 1). Compared 

with the reference group, deltamethrin inhibited the BChE 

activity in the plasma of C. carpio (Figure 1). 
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Figure 1. Effects of different concentrations of deltamethrin on enzyme activities in the plasma of Cyprinus carpio 

A significant reduction in the total protein and globulin 

levels was recorded in the plasma of C. carpio exposed to 

deltamethrin compared to the control group. However, no 

significant changes were found in albumin levels (Figure 

2). Based on the results, a significant increase in glucose 

and creatinine levels was observed in the plasma of C. 

carpio exposed to deltamethrin as compared to the control 

group (Figure 2). Cholesterol and triglyceride levels were 

observed to be significantly higher in the plasma of C. 

carpio exposed to 12 and 18 µg L-1 deltamethrin in 

comparison to the control group (Figure 2). 
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Figure 2. Effects of different concentrations of deltamethrin on blood biochemical parameters in Cyprinus carpio 
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A significant increase was observed in SOD activity in the 

hepatocytes of C. carpio exposed to deltamethrin (Figure 

3). The results revealed that exposure to different 

concentrations of deltamethrin decreased GR, CAT, and 

G6PDH activities in the hepatocytes of C. carpio (Figure 

3).  

Figure 3. Effects of different concentrations of deltamethrin on antioxidant enzyme activities in the hepatocytes of Cyprinus carpio 

A significant increase was observed in the MDA and CA 

levels in the hepatocytes of deltamethrin exposed C. carpio 

compared to the control group (Figure 4). After exposure to 

different concentrations of deltamethrin, TAO levels in the 

hepatocytes of C. carpio significantly decreased as  

 

compared to the control group (Figure 4). Based on the 

result, glycogen levels in the hepatocytes of C. carpio were 

significantly reduced in all the deltamethrin-treated fish in 

comparison to the control group (Figure 4). 
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Figure 4. Effects of different concentrations of deltamethrin on CA, MDA, TAN, and glycogen levels in the hepatocytes of Cyprinus carpio 

                              DISCUSSION 

The present study examined the toxicity effects of 

deltamethrin on the common carp, C. carpio, on 

biochemical parameters and oxidative markers. No 

mortality was observed in all experimental groups and the 

control group. Deltamethrin was originally designed to 

disrupt the function of ion conduction channels and 

transmit nerve signals to the insect nervous system [32]; 

moreover, it can have toxic effects on aquatic animals, 

including fish [9]. The extreme sensitivity of aquatic 

animals to deltamethrin may be due to its lipophilic nature 

[12]. Deltamethrin can be simply absorbed through the 

gills, skin, and gastrointestinal tract, thus gaining direct 

access to the blood supply and the sites of toxic action [10]. 

Deltamethrin, even at low concentrations in the blood, 

readily crosses the capillaries of the central nervous system 

and disrupts it [32]. Exposure to deltamethrin can induce 

liver mixed-function oxidases and detoxification 

mechanisms. Furthermore, some studies reported 

alterations in cellular biochemical homeostasis [14, 6]. In 

the present study, a significant elevation in AST, GGT, and 

CPK activities was observed in the plasma of C. 

carpio exposed to different concentrations of deltamethrin 

(Figure 1). There was a significant increase in ALT, ALP, 

and LDH activities in the plasma of C. carpio exposed to 

12 and 18 µg L-1 deltamethrin (Figure 1). Exposure to 

deltamethrin led to the disturbance and rupture of the 

cellular membrane. Hence, cytoplasmic enzymes leaked 

into the plasma. The increased ROS generation during 

deltamethrin detoxification facilitated lipid peroxidation 

and cell membrane disintegration. These results are 

consistent with similar changes reported in Labeo 

rohita [33], Oreochromis niloticus [34], C. carpio [35, 36], 

and Carassius auratus [37], after exposure to glyphosate, 

nano-cadmium, chlorpyrifos, dimethoate, and methylene 

blue, respectively.  

Exposure to deltamethrin significantly inhibited BChE 

activity in the plasma of C. carpio compared to the control 

group (Figure 1). BChE is a neurotransmitter that plays an 

essential role in neurotransmission [38]. Therefore, a 

decrease in BChE may interfere with the transmission of 
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neural signals. The interaction of deltamethrin and its 

metabolites with the structure of BChE may inhibit its 

activity. BChE is mainly synthesized in the liver and found 

in blood plasma, liver, heart, kidneys, and intestines [23]. 

Decreased BChE may be related to impaired biosynthesis 

in hepatocytes. Likewise, BChE is involved in the 

detoxification of xenobiotics and hydrolysis of 

acetylcholine [23]. In addition, BChE in aquatic organisms, 

especially fish, can prevent toxicity by binding to toxins 

before reaching the target molecules [39]. The conjugation 

of deltamethrin and its metabolites to BchE may reduce its 

levels.   

The total protein and globulin levels in the plasma of C. 

carpio exposed to deltamethrin were significantly lower 

than the control group. However, no significant changes 

were detected in albumin levels (Figure 2). The results 

showed that exposure to deltamethrin led to decline in 

protein biosynthesis in the hepatocytes. Furthermore, 

decreased total protein may be due to reduced protein 

storage in the liver, degradation, and possible use of amino 

acids in the energy supply cycle to counteract cytotoxic 

effects. A significant decrease in globulin levels was 

related to reduction in protein biosynthesis in the liver of 

fish exposed to deltamethrin. Decreased total protein and 

globulin were reported in Pontastacus leptodactylus [40], 

Coturnix japonica [27], Emys orbicularis [41], and 

Cirrhinus cirrhosus [42] exposed to chlorpyrifos and 

glyphosate, deltamethrin microplastics, and crude oil, 

respectively. 

The increased glucose levels may indicate metabolic stress. 

Increased cellular energy demand may be a physiological 

mechanism for counteracting the cytotoxicity of 

deltamethrin [43]. Further, a decreased glomerular filtration 

rate in the kidneys of fish exposed to deltamethrin may 

elevate creatinine levels. When nephrons are hurt, 

creatinine levels will be increased in the plasma 

[44].   Studies on Nile tilapia (Oreochromis niloticus) 

showed that deltamethrin could increase serum creatinine 

[43, 45]. A similar change was observed in glucose and 

creatinine levels in the blood of C. carpio [46] exposed to 

paraquat. 

The increased cholesterol and triglyceride levels may be 

due to disturbances in the balance between the intestinal 

absorption rate, hepatic synthesis, excretion, and storage of 

lipids in the adipose tissue. Farag et al. [47] found that 

Bifenthrin increased cholesterol and triglyceride in the 

serum of O. niloticus [47]. A similar increase was observed 

in cholesterol and triglyceride in the serum of C. carpio 

exposed to profenofos [48]. 

Elevated SOD activity was a physiological response to 

increasing superoxide anions in the hepatocytes. A 

significant increase in SOD activity could facilitate the 

conversion of superoxide anions to hydrogen peroxide. 

Additionally, a significant increase in SOD activity was 

reported in the  hepatopancreas of  E. sinensis exposed to 

0.073 μg L-1 deltamethrin [49]. However, our results 

contradict the findings of Elia et al. [50], indicating that 

deltamethrin exposure resulted in a significant reduction in 

SOD in O. mykiss [50]. The change in SOD activity may be 

due to the flexibility of the antioxidant defense system of 

fish in neutralizing ROS. Furthermore, Hong et al. [20] 

revealed that changes in SOD activity in aquatic organisms 

in response to deltamethrin exposure could be dose-

dependent [49]. 

The activity of GPx in fish exposed to 12 and 18 µg L-1 

deltamethrin was significantly higher than in the control 

group (Figure 3). GPx plays a role in the detoxification of 

hydrogen peroxide (H2O2). Therefore, the increase in GPx 

activity may be due to the increased accumulation of H2O2 

in hepatocytes. Consistent with our observations, a 

significant increase in GPx activity was reported in the 

hepatocytes of C. punctatus exposed to deltamethrin [17].   

GR plays a role in reducing glutathione disulfide (GSSG) 

to the sulfhydryl form glutathione (GSH). A significant 

decrease in GR activity could reduce the capacity of 

cellular GSH. Ceyhun et al. [54] found that exposure to 

0.25 μg L-1 deltamethrin reduced GR activity in the 

hepatocytes of O. mykiss. 

According to evidence [51], G6PDH contributes the 

biosynthesis of Nicotinamide adenine dinucleotide 

phosphate (NADPH), which is essential for the reduction of 

cellular GSH. Therefore, a significant decline in G6PDH 

activity could negatively affect the function of GR and the 
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regeneration of GSH. Thus, the ability of cellular radical 

scavengers may also decrease due to reduced cellular GSH. 

The effect of some drugs and xenobiotics on inhibiting the 

activity of G6PDH in fish is consistent with our findings 

[52, 36, 53]. Similarly, Ceyhun et al. [54] reported a 

significant decrease in G6PDH activity in rainbow trout in 

response to exposure to deltamethrin [54]. 

Morover, CAT exerts a role in the decomposition of H2O2 

into water and oxygen. A significant decrease in CAT 

activity can inhibit the neutralization of H2O2. As a result 

of the inhibition of CAT activity, the lipid peroxidation rate 

may represent an increase. A significant decrease in CAT 

activity may be related to the downregulation of CAT gene 

expression in fish exposed to deltamethrin [45]. A 

reduction in CAT activity was observed in the hepatocytes 

of Channa punctatus after a challenge with deltamethrin 

[55]. In the previous study, deltamethrin declined CAT 

activity in the hepatocytes of C. punctatus [17], which is in 

line with our findings.   

MDA and CP levels in the hepatocytes of deltamethrin 

exposed C. carpio showed a significant increase in the 

MDA and CA generation in deltamethrin treated groups 

compared to the control group (Figure 4). MDA is a final 

product of lipid peroxidation. Therefore, a significant 

increase in MDA levels indicated an imbalance between 

per-oxidants and the cellular antioxidant defence system. 

CP as a biomarker of protein peroxidation is often formed 

due to the interaction of ROS with proteins [32]. The 

denaturation of some functional proteins and enzymes may 

disrupt many biochemical processes and cell physiology. A 

significant increment in lipid peroxidation and protein 

carbonylation was reported in the hepatocytes of C. carpio 

[55], Channa punctate [17], and Bombina variegata [56] 

exposed to deltamethrin. In their study, Dorts et al. [57] 

found that deltamethrin exposure increased lipid 

peroxidation and protein carbonylation rate in the 

hepatopancreas of black tiger shrimp, Penaeus monodon 

[57], which corroborates with our results.  

Decreased cellular total antioxidants are important 

biomarkers demonstrating the collapse of the cellular 

antioxidant defence system and the oxidative stress in fish. 

Reduced TAO contents were reported in C. carpio exposed 

to chlorprifos [35], dimethoate [36], and paraquat [58]. 

Similar results were detected in Zebra cichlid, Cichlasoma 

nigrofasciatum [53], and freshwater snail, Galba truncatula 

[59] exposed to malathion and dimethoate, respectively. 

Increased cellular energy demand can lead to the 

breakdown of stored glycogen in the liver and muscles into 

glucose [60]. As a result, the necessary energy for the 

physiological activities of the cells, including 

detoxification, will be provided after the increase in blood 

glucose. Thus, the biodegradation of glycogen could help 

supply energy to relieve the cytotoxic effect of 

deltamethrin. Similar to our finding, a reduction in 

glycogen contents was observed in the liver of G. 

truncatula [59], Heteropneustes fossilis [61], and cichlid, 

Australoheros facetus  [62], exposed to dimethoate, 

chlorpyrifos, and azoxystrobin, respectively 

CONCLUSIONS 

Overall, our findings revealed that although sub-lethal 

concentrations of deltamethrin could not lead to short-term 

mortality of fish, long-term exposure of fish could cause 

physiological and biochemical disorders. Increased plasma 

AST, ALT, GGT, LDH, ALP, and CPK activities indicated 

severe cell membrane damage. Furthermore, a decrease in 

the total protein and globulin and an increase in glucose, 

creatinine, cholesterol, and triglyceride levels showed the 

disturbance of homeostasis in the cells. Changes in 

oxidative stress biomarkers also displayed oxidative stress 

in fish hepatocytes exposed to deltamethrin. Therefore, 

exposure of fish to the sub-lethal concentrations of 

deltamethrin can endanger fish life in the long run. 
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