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ABSTRACT:   
Purpose Numerous clinicians utilise digital histopathology images to diagnose diseases 

such as cancer and to get information about the aetiology of the illness. Typically, 

histopathology images exhibit poor image quality artefacts such as low contrast across 

various areas of the image, blurring, and inadequate lighting. The primary objective of 

this article is to offer a better and successful hybrid strategy for delivering overall 

contrast enhancement, accurately enhancing fine details, and producing a natural and 

distortion-free histopathological image. 

Methods The novel hybrid method leverages the advantages of many established 

enhancing approaches to generate a natural and distortion-free histopathology picture 

from low-quality histopathology photos. After obtaining the brightness channel using a 

luminance measurement technique, two inputs are created utilising local histogram 

equalisation and retinex theory. The brightness component is changed by fusing the 

derived inputs with their neighbouring weights on a multi-level basis. Through a careful 

selection of inputs, their neighbouring weights, and a multi-level fusion technique. An 

extensive quantitative analysis demonstrates that the proposed method outperforms 

existing image enhancement techniques. The proposed method produced a maximum 

average peak signal-to-noise ratio of 29, a maximum average UIQI, SSIM, and FSIM of 

0.99, 0.93, and 0.96, respectively, and a minimum average AMBE of 2.22. 

Results The proposed approach was able to give superior overall improvement while 

preserving naturalness and superior performance in all performance measures such as 

AMBE, SSIM, FSIM, UIQI, and PSNR. 

Conclusion The proposed approach produces images of higher quality, which is 

extremely beneficial for disease inspection and diagnosis. 

 

 

1. Introduction 

Numerous clinicians utilise digital histopathology 

images [1] to diagnose disorders or cancer and also 

give valuable information about the disease's aetiology. 

Generally, histopathological images exhibit poor 

picture quality artefacts such as low contrast across 

various sections of the image, blurring, and inadequate 

lighting [2]. These artefacts are caused by incorrect 

straining procedures, an incorrect camera 

configuration, and other difficulties. Histopathology 

images need adequate augmentation of picture features 

such as contrast, borders, edges, and brightness in order 

to move them to a condition suitable for processing by 

a clinical expert or person. This preprocessing phase is 

also necessary to improve the accuracy of several 

computer-aided techniques used in histopathology 

pictures, such as segmentation and classification. 

Enhancing low contrast histology images is a critical 

step in the study of histopathology images. It is a 

technique for adjusting the picture's intensities in order 

to get the desired image contrast and brightness tone 

for the best histopathological image quality [3]. 

Numerous conventional picture enhancing methods are 

documented in the literature. These strategies may be 

thought of as spatial and transfer-based enhancements. 

The former use the mapping function to directly 

convert all of the image's intensities. It includes of 

approaches based on histograms, such as histogram-

based augmentation strategies [3-17]. The latter 

involves transforming spatial data to other domains and 

then processing the transfer domain to generate the 
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output picture; it comprises wavelet-based 

enhancement techniques [22-25]. 

The issue with typical enhancement approaches is that 

although each method improves a few performance 

parameters, it does so at the expense of other critical 

performance matrices and results in unwanted picture 

quality distortion. To provide additional clarity, one 

low-enhanced histopathology image is proposed using 

the five most widely used existing enhancement 

methods (THE [3,4], LHE [4], DHE [9], MSR [26], and 

AGCW [17]), and these are experimentally evaluated 

using five critical performance matrices, including the 

Absolute mean brightness error (AMBE), Feature 

similarity index (FSIM), Structure similarity index 

(SSIM), Universal image quality index (UIQI) [25] as 

shown in Figure 1. Histogram Equalization (HE) is one 

of the most extensively used histogram-based 

procedures [4], and it enhances the picture by altering 

the histogram's pixel counts as seen in Figure 1(b). 

However, this technique results in an excessively 

enhanced histopathological picture with a high AMBE 

value, a poor similarity index (SSIM), and a low signal 

to noise ratio (PSNR). Another often used local 

enhancement approach is contrast restricted adaptive 

histogram equalisation (LHE) [4], which produces an 

unnatural-looking final picture with a low PSNR [12] 

and a low feature similarity index (FSIM) as shown in 

Figure 1(c). Adaptive gamma-based HE (AGCW) [17] 

is an upgraded variant of classic HE that produces a 

whitewashed histopathological picture with a high 

AMBE, a low universal quality index (UIQI), and a 

high noise content (PSNR) as seen in Figure 1(d). The 

most often used retinex-based technique is Multi-scale 

retinex (MSR) [26], which produces a color-distorted 

augmented picture with low similarity indexes such as 

UIQI and SSIM as shown in Figure 1(e). Another 

enhanced HE approach is dynamic histogram 

equalisation (DHE) [9], which enhances contrast but 

suffers from other critical quality matrices such as poor 

feature similarity, high AMBE, and low PSNR value as 

seen in Figure 1(f). 

 
(Original image) 

 
(a) 

(HE) 

 
(b) 

(LHE) 

 
(c) 

Low contrast, low brightness (High AMBE, Low SSIM, low PSNR) (Low FSIM, Low PSNR) 
(AGHE) 

 
(d) 

(MSR) 

 
(e) 

(DHE) 

 
(f) 

(High AMBE, Low UIQI, Low PSNR) (Low SSIM, Low UIQI) (Low FSIM, Low PSNR, High 
AMBE) 

Fig. 1 (a) original image, (b) HE image, (c) LHE image, (d) AGHE image, (e) MSR image, (f) DHE image 

 

The primary objective of this paper is to develop an 

improved and effective integrated fusion approach that 

incorporates the advantages of various mature image 

enhancement techniques in order to produce a natural 

and distortion-free histopathology image while also 

optimising all performance parameters. To compare the 

suggested method's performance to that of other 

established standard methods, other established 

standard methods are also run. 

The remainder of the essay is structured as follows: 

Section 2 summarises previous research in the 

literature. Section 3 illustrates the suggested technique 

of augmentation. Section 4 outlines the performance 

parameters that will be used to interpret the 

experimental results. Finally, Section 5 has a 

concluding paragraph followed by a list of references. 

 

2. Related work 

There are numerous image enhancement approaches 

introduced by analyzers in the literature. The traditional 

histogram equalisation (THE) technique is still one of 

the most commonly used techniques for improving 

global contrast. The main idea of HE  is subjected to 

input image pixel distribution over the entire dynamic 
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range based on limited cumulative values. Indeed, the 

entire image is divided into nearest levels that describe 

various image boundaries. To obtain a uniform 

histogram, the boundaries specifying the initial values 

are improved by admitting a couple of new boundaries 

within the previous one, and the incoming boundaries 

are defined recursively. However, standard histogram 

equalization resulted in excessive enhancement in the 

majority of the test images. To address these issues, 

various improved histogram-based enhancement 

approaches are introduced, including brightness 

preserving bi histogram equalisation (BPHE) [6], 

dualistic image histogram equalisation (DSHE) [7], 

Dynamic histogram equalization[9], minimum mean 

brightness error bi histogram equalisation [8], and 

recursively divided and summed HE approach [10-11]. 

All of these methods divide the incoming histogram 

into two parts based on average or central value, and 

the remaining methods separate the histogram 

recursively.  

Because the above-improved histogram-based 

algorithms divide an image histogram into small sub-

blocks and apply the HE algorithm to each small 

portion. These methods can provide overall global 

enhancement, but the resulting images lack local detail 

enhancement. Tan et al. developed a local histogram-

based method for increasing the contrast of CT brain 

images [15]. The basic idea behind this algorithm is to 

divide the incoming image into numerous sub-portions. 

The grey level histogram pattern is rejected for each 

sub-portion and thus readjusted to the remaining grey 

levels with a selected threshold. Finally, we have a 

gray-level remapping function. One disadvantage of 

this method is the user-defined threshold value. Ameen 

et al. [14] proposed enhancing the contrast of CT 

images using a contrast restricted adaptive histogram 

equalisation (LHE) approach based on normalised 

gamma correction. The novel feature added to the 

preceding technique is a first stage with a normalised 

gamma correction feature. Huang and Yeh et 

al. presented a two-part histogram-based image 

enhancement method. The first section includes the 

division of the input histogram into small visible 

details. The second part involves grey level 

transformation for later contrast improvement of the 

image with full brightness preservation for each 

generated small histogram [16]. Huang et al. described 

a method that combines the standard gamma correction 

technique with histogram equalization. [17]. In 

comparison, the retinex-theory-based Multi-scale 

Retinex with Color Restoration (MSR)[26] iused the 

single-scale Retinex (SSR) to calculate the reflectance 

of an image by eliminating the illumination from the 

original image and then the final image is obtained by a 

weighted combination of different SSR outputs.  

SVD approaches are also used to improve image 

contrast while avoiding the drawbacks of traditional 

methods [12, 13]. The singular value matrix contains 

the image's grey level data, so that changing the 

singular values directly affects the image's contrast, 

while the remaining information in the image remains 

unchanged. Bhandari et al. introduced the DWT-SVD-

based approach for satellite image enhancement [14] to 

protect edge data from loss. In this method, the SVD 

method is only applied to the LL sub-band obtained via 

DWT. By varying the initial singular values by a 

correction factor, an improved lower sub-portion is 

obtained. 

For contrast enhancement, Atta et al. proposed an 

improved approach based on DWT and SVD (ASVD) 

[18]. In fact, the authors used equalization to determine 

the enhanced singular matrix by combining the singular 

matrices of the original and output images. The method 

provides improved output without the formation of 

artefacts and improves the original mean brightness. X. 

Fu et al. [19] proposed a new remote sensing image 

enhancement method that first used regularised 

histogram equalisation to obtain better global 

enhancement and then used discrete cosine transform 

(DCT) to highlight the local details of an image. Koh et 

al. [20] described a method for improving the contrast 

of CT images using recursive sub-image histogram 

equalization in the transfer domain. However, gamma-

based enhancement methods result in over-

enhancement, especially when images' grey levels are 

not uniformly illuminated. Huang et al. [17] used the 

adaptive gamma correction with weightd disyrubution 

(AGCW) method to do not change the intensity level 

range and thus this technique does not give to the 

gamut-problem. Rao et al. [25] proposed novel image 

enhancement methods in which they first modify the 

histogram [15], then divide it into smaller histograms, 

clip each histogram, and finally apply bilateral filtering. 

Sahnoun et al. reported a method to improve spinal 

cord MRI images using both adaptive gamma 

transformation and DWT-SVD (DWT-AGC)[21]. The 

author first improves the lower frequency sub-bands of 

the MRI image by modifying the singular values, and 

then the adaptive gamma correction method is used to 

further improve the lower frequency sub-bands. 

Despite the fact that these approaches may conserve 

more average brightness than histogram-based 

approaches, they may fail to improve contrast. Sahnoun 

et al developed a method for medical images that 

defined the new gain factor based on DWT-SVD based 

computation to scale the singular value matrix.[22] 

Subramani et al. [23] suggested a three-stage medical 

image enhancement process: To begin, the input 

histogram is split into two histograms depending on the 

exposure threshold in order to maintain the mean 

brightness and then clipped to restrict contrast 
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amplification, and each clipped sub histogram is given 

a new dynamic range. Finally, a contrast-enhanced 

picture is obtained by independently equalising each 

clipped sub-histogram. Kumar et al. [31] implemented 

a new triple clipped histogram technique (THE-DWT) 

for improving the fundamental characteristics of 

clinical photographs, including brightness preservation 

and contrast.  Triple clipped dynamic histogram 

equalization method is used to equalize the input 

medical image in the first step. Fundamental 

calculation-based fusion techniques, such as DWT-

SVD, are used to modify the approximated and 

informational components of both equalized and 

original images. Acharya and Kumar [32] have 

proposed a strategy for improving the contrast of 

medical images that combines a genetic procedure, 

histogram subdivision, and probability density function 

(PDF). The threshold value is optimized according to 

the principles of genetic algorithms, which improves 

the adaptability of the proposed procedure. Rao et al. 

[33] proposed a new morphological transform method 

that uses particle swarm optimization, DWT-SVD, and 

edge map methods to improve the noise and contrast of 

CT images. 

 

3. Methods 

3.1. Proposed technique 

The suggested blended enhancement approach works 

on the principle of fusing diverse entering inputs with 

their derived weights to provide a balanced improved 

output. Figure 2 depicts the suggested method's block 

diagram. 

 

 

 
Fig. 2  Block diagram of the proposed scheme 

 

The whole process has been broken down into four 

stages. To begin, the original picture is separated into 

three components: hue (H), saturation (S), and value 

(V). To improve the histopathology picture, only the V 

channel is treated further, and three inputs are created 

from the V component after LHE and MSR processing. 

Each derived input is converted to a weight matrix. The 

Laplacian pyramid is used to further process the inputs, 

while the Gaussian pyramid is used to breakdown the 

weights in order to fuse them together. After obtaining 

the final improved V component, it is combined with 

the remaining H and S components to provide the final 

enhanced output. Each stage is thoroughly discussed in 

the entering section. 
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3.2.  Luminance channel estimation  

In general, the RGB colour model may be used to 

depict colour digital histopathology pictures. If the 

suggested approach is applied directly to these three 

RGB colour space elements: Red (R), Green (G), and 

Blue (B), it may result in undesirable colour distortion 

owing to the various levels of change in these three 

components. To resolve this grave issue, the HSV 

colour model is being employed. The HSV space is 

more intuitive, since the hue (H) channel corresponds 

to the spectral structure of colour, the saturation (S) 

channel to the clarity of colours, and the value (V) 

channel to the lustre or brightness value. Hue and 

saturation refer to the image's colour content, while V 

refers to the image's brightness or luminance value. To 

begin, the RGB colour picture must be converted to 

HSV [17] to avoid colour distortion and artificial 

colour tone augmentation. 

The following equations explain the conversion of an 

image's RGB space to HSV values. 

 

Finally, the values of H, S, and V are computed using 

the equations (1) to (6).                                                 

The following equations were used to convert HSV to 

RGB: (7) to (13) 

1. When H is in the range of 0◦ to 120◦, the RGB 

components are obtained by  

2. When H is in the range of 120◦ to 240◦, the RGB 

components are obtained by  

3. When H is in the range of 240◦ to 360◦, the RGB 

components are obtained by 

    

3.3. Inputs calculation  

Three input pictures are created from the estimated 

value component in the proposed blended-based 

technique (V). The first input picture is the value (V) 

component that was determined initially. This holds the 

original picture's brightness information, which enables 

us to avoid image distortion and keep the image's 

naturalness. The second input picture is used to 

compute the global overall enhancement, which 

brightens and suitably enhances the whole image, but 

notably the dark and low contrast areas prevalent in 

histopathological photos. Numerous approaches for 

global improvement are available, including histogram 

equalisation (HE) methods [3-16], gamma correction 

[18], and retinex-based methods [21]. The second input 

is calculated using the Multiscale retinex (MSR) 

technique on the predicted V channel in this approach. 

MSR is a composite of Single Scale Retinex (SSR) 

outputs [21] and is calculated by subtracting the light 

component from the picture to produce the reflectance. 

This is specified in Equation No (14) 

Where  is the number of scales,  denotes the weighting 

factor for each scale, and  denotes the output of the 

single-scale retinex for each scale  and it is given in 

equation no (15)   

Where  is the value channel,  is the convolution 

operator and  is Gaussian filter which is written in 

equation (16) 

  

In the proposed method,   is set to 3,  are 15, 80, and 

250 and  is 1/3. Because the grey level range is 

enlarged worldwide as a result of the luminance 

channel improvement, the contrast between nuclei and 

surrounding tissue is lowered or remains unchanged. 

As a result, the third input picture is identified using 

Contrast Limited Adaptive Histogram Equalization 

(LHE) [4], which enhances minor features within 

pathological images. LHE is applied directly to the 

channel with the predicted brightness (V). LHE stands 

for local frequency histogram enhancement and is 

defined as follows. The input luminance channel 

picture is first partitioned into a number of non-

repeated areas of equal size. The next step is to extract 

the clip value from the input picture and fill in the 

image's borders before segmenting it into blocks if 

required. Each block's frequency graph is clipped to the 

appropriate clip limit. Finally, one of the interpolation 

algorithms is used to interpolate the grey level 

mappings. The input channel is separated into non-

overlapping 8*8 blocks with a clip limit of 0.001. 

 

3.4. Weights derivation 

Following the calculation of three inputs from a single 

estimated luminance channel, the next step is to 

compute weights for the three inputs. Fu et al. [26] 

describe the brightness weight as a parameter that gives 

a high value to well-exposed pixels and a low value to 

overexposed grey values. The Resulting LHE V and 

MSR V channels may be excessively amplified in some 

pixels, resulting in an odd and distorted picture. One 

solution to the over-enhanced issue is to apply 

brightness weights, which guarantee that over-

enhanced pixels get less weight values, while well-

enhanced pixels receive more. The brightness weight 

may be written as follows: 

  

Where, 

is the no of derived inputs 

 is the derived input  

0.5 is the approximate mean and 0.25 is the 

approximate standard deviation  

 

Another kind of weight employed in the suggested 

technique is the Laplacian weight, which is created by 

applying a Laplacian filter on the three derived inputs. 

A high Laplacian weight value is connected with 

features and edges, while a low Laplacian weight value 

is associated with the other remaining pixels. The 

Laplacian Weight provides sufficient augmentation at 
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the borders to make nuclei and surrounding tissue 

characteristics more identifiable than they were before, 

and it is determined as follows  

 

Where  denotes the Laplacian filter's kernel and  

denotes the derived input. Then, these two weights are 

normalised to generate the final weight specified in 

equation (20), which will be utilised to appropriately 

blend the three derived inputs.  

 

Where N is the total number of derived inputs and 

weights determined, which is equal to three. Figure 3 

illustrates each of the computed weights. The first 

column specifies the three V channel inputs: V1, V2-

MSR, and V3-LHE. To keep things simple, these inputs 

are shown in colour. The second column indicates the 

brightness weight   for each computed input, while the 

third column indicates the Laplacian weights . The final 

column comprises normalised weights , which are 

computed from the first two. 

 

 

 

 
V1 

 
 

 
 

 
W1 

 
V2-MSR 

 
 

 
 

 
W2 

 
V3-LHE 

 
 

 
 

 
W3 

Fig.3 Derived inputs and it’s corresponding weights 

 

3.5. Multiscale fusion  

The last step is to combine all of the computed inputs 

using the resulting weights. There are many ways for 

fusing these inputs and their resultant weights, 

including naïve fusing and multi-scale filters [27]. 

These fusion approaches often introduce undesirable 

artefacts into the final augmented picture and are more 

computationally intensive. The suggested approach 

employs a pyramid methodology [28] to provide a 

more unified result. To begin, each computed input is 

transformed to a Laplacian pyramid, followed by a 

Gaussian pyramid for each normalised weight. The 

Laplacian and Gaussian pyramids both have the same 

number of levels, which in the suggested technique is 

set to five. Laplacian and Gaussian operations [29] are 

both frequently used and straightforward to implement. 

The product term is produced by multiplying each level 

of the Gaussian and Laplacian pyramids by the input 

and weight, and lastly, the output  is created by 

summing all the product results obtained for each input 

and weight for each level  using equation no (30). 

Where  is the number of inputs, which in this example 

is three, and  denotes the number of levels in pyramids, 

which equals five.  is the Gaussian pyramid of weights, 

and   is the Laplacian pyramid of inputs. The Final V 

component is created by adding all the outputs at each 

level and upsampling each output to the preceding one, 

as specified in equation no. (22) and as shown in the 

following equation. 

 

The increased V component is then combined with the 

remaining hue (H) and saturation (S) components to 

create the final colour histology picture. 

 

Results 

This section presents the experimental setup, materials, 

performance parameters and results. 
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3.6. Experimental Setup 

The experimental setup features are given in Table 2 

 

 

Table 2  Set up Parameters 
SPECIFICATIONS 

Processor Intel core I5, 8th Gen 

Memory  16 GB 

Operating System Windows 10 (64 bit) 

Tool used MATLAB   

Version 10 

Number of images 10 

Images Type Color image 

Width (LHE)  0.001 

Window size (LHE) 8*8 

Gaussian filter  15, 80, 250 

Gaussian filter  1/3 

 

3.7. Material 

To compare the proposed approach to established 

standard image improvement techniques, a range of 

low-quality digital histopathology photos were chosen 

from a number of pathology databases, including the 

UW medical pathology resources, webpathology, and 

the HAPS histology image collection. These datasets 

are freely accessible and have been created for 

educational purposes. 

 

3.8. Performance parameters 

The suggested approach is compared to many known 

contrast enhancement methods for low-quality digital 

histopathology photos. The outcomes are examined 

subjectively and objectively. The obtained results were 

objectively analysed using a variety of evaluation 

parameters, including the Absolute Mean Brightness 

Error (AMBE), the Structural Similarity Index 

Measurement (SSIM), the Feature Similarity Index 

Measurement (FSIM), the Universal Image Quality 

Index (UIQI), and the Other Significant Quantitative 

Measure Peak Signal to Noise Ratio (PSNR). 

 

• Absolute Mean Brightness Error(AMBE) 

It is used to determine the extent to which the 

suggested solution preserves brightness, and for 

optimal performance, AMBE should be as low as 

feasible. It is determined by subtracting the mean of the 

greyscale values in the original and suggested images 

and is denoted by [1]. 

 

Where, 

m(x) is the average pixel of the input image  

M(y) is the average pixel of enhanced image 

 

• Structural Similarity Index Measurement (SSIM) 

The SSIM is used to quantify the deterioration of 

structural information in the output processed picture, 

as well as the structural information disparities between 

the original and improved images. The following 

equation [2] is used to compute it. 

SSIM values are typically in the range of -1 to 1, and 

for optimal performance, they should be near to the 

maximum value, which is one. 

Where 

 are the mean of pixels in the original and output 

image. 

 are the standard deviation of the original and output 

image. 

 contains the correlation coefficient between input and 

output image 

 are the constants 

 

• Feature Similarity Index Measurement (FSIM) 

Another critical similarity metric is the SSIM, which 

quantifies the deterioration of feature information in the 

processed picture and estimates the discrepancies 

between the input and output images' feature details. 

The following equation [2] is used to compute it. FSIM 

values normally lie between -1 and 1, and for best 

performance, they must be near the highest value of 

one. 

 

Where  

are the rows and columns 

is the size of the original image 

describes the feature similarity both images 

measures the phase congruency [] 

 

• Universal image quality index (UIQI): 

UIQI is one of the most extensively used and 

significant similarity measures; it is an overall 

similarity index composed of three similarity measures: 

contrast, brightness, and structure. It is calculated using 

the hybrid equation. UIQI values are usually between -

1 and 1, and for best performance, they should be close 

to the maximum value of one. 
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Where 

 are the mean intensity of corresponding input and 

output image 

 are the standard deviation of the original and output 

image. 

 

• Peak Signal to Noise Ratio (PSNR) 

PSNR is another performance metric used to determine 

the state of improved output. It is derived by dividing 

the input signal to noise ratio by the processed output 

signal to noise ratio. It is expressed as a decibel 

number, and a higher PSNR value suggests a higher-

quality picture with less noise. It is said as follows: 

 

Where, 

is the  of the maximum value of the gray level range of 

image 

is the mean square error between original and output 

image and it is given as: 

 

Where  

are the rows and columns 

are the size of the image 

are the input and output image respectively  

  

3.9. Subjective results 

This section compares the proposed technique to 

various current improvement strategies for low-quality 

digital histopathology photos on a subjective. 

Subjective assessment entails visual comparison of 

outcomes, which include output pictures processed 

using the suggested and other established techniques. 

Ten low contrast histopathology pictures were chosen 

for examination. THE, LHE, AGWD, MSR, and DHE 

are now utilised as standard approaches for 

comparison. This section discusses the initial low 

contrast histopathology photos and the improved output 

obtained by applying various approaches to these input 

images; five of 10 images are presented in Figure 4. 

The first row comprises five histopathological photos, 

the second row provides the results of the first 

technique THE, the third row contains the results of the 

LHE method, and so on. The last row corresponds to 

the picture that has been proposed. 

 

Original 

Images 

     

THE 

Image 

     

LHE 

Image 

     

AGWD 

Image 
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MSR 

Image 

     

DHE 

Image 

     

PROP 

Image 

     

Fig. 4 Visual outputs 

 

3.10. Objective results 

This section compares the proposed technique to 

various current improvement strategies for low-quality 

digital histopathology photos on an objective basis. The 

objective evaluation process involves a comparison of 

findings using a variety of assessment metrics, 

including AMBE, SSIM, FSIM, UIQI, and PSNR as 

shown in Figs 5-9. Ten low contrast histopathology 

pictures were chosen for examination. THE, LHE, 

AGWD, MSR, and DHE are now utilized as standard 

approaches for comparison.  

 

4. Discussions 

4.1. Subjective discussions 

After visual inspection of the findings, it is possible to 

conclude that THE creates photos with colour 

distortion, resulting in strange histopathological 

images. Although LHE generated better photographs 

than THE, there is a significant difference between the 

input and output images in terms of brightness, hues, 

and, most notably, the nucleus blue color is intensified. 

AGWD produces a pale picture with practically little 

colour. MSR produces a distorted picture with a 

yellowish hue, while DHE produces an over-exposed 

image. The suggested approach generates balanced 

enhanced histopathology pictures that are neither over- 

nor under-exaggerated. The nucleus blue hue and 

surrounding tissue colour have been improved 

significantly, resulting in a histopathological picture in 

which each component is clearly differentiated from 

the others. 

 

4.2. Objective discussions 

4.2.1. AMBE performance: 

Figure 5 illustrates the performance of numerous 

enhancement approaches and the suggested strategy in 

terms of AMBE. Several points should be made. 

• It can be shown that AGCW and THE provide the 

greatest AMBE values across all photos. 

• MSR and DHE provide the next greatest mean 

brightness values, however LHE generates a lower 

AMBE value than traditional procedures. 

• As shown by the average values line graph, the 

suggested approach has the lowest mean brightness 

of the others. 
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Fig. 5: AMBE chart 

 

4.2.2. FSIM performance: 

Figure 6 illustrates the performance of numerous 

enhancement approaches and the suggested strategy in 

terms of FSIM. The following information is noted: 

• In comparison to previous approaches, the suggested 

strategy demonstrates the largest value of feature 

similarity. Additionally, multi-scale retinex (MSR) and 

adaptive gamma with weighted distribution (AGCW) 

provide the best FSIM results. 

• While dynamic and local improvement approaches 

perform well on average across all 10 test photos, 

histogram equalisation gives the lowest FSIM score, 

indicating that its feature information is largely 

corrupted. 

 

 
Fig. 6:  FSIM chart 

 

4.2.3. SSIM performance: 

Along with the mean brightness error and feature 

similarity index, another matrix is used to determine 

the efficiency of an output picture. This matrix is 

termed the structural similarity index (SSIM). Figure 7 

shows the SSIM graph. The following data is gathered: 

• The suggested approach is capable of preserving 

structures in improved images and so has a higher 

value than previous enhancement strategies. 

• Compared to other conventional approaches, AGCW 

and local HE perform better in terms of structural 

similarity. 

• Almost all 10 photos of MSR and dynamic HE had 

SSIM values between 0.4 and 0.6. 

• Traditional Histogram Equalization (THE) has the 

lowest SSIM value (less than 0.2), indicating that the 

output HE pictures are more structurally deformed. 

 

 

0

20

40

60

80

THE LHE AGCW MSR DHE PROP

AMBE

im1 im2 im3 im4 im5 im6

im7 im8 im9 im10 AVG

0

0.2

0.4

0.6

0.8

1

1.2

THE LHE AGCW MSR DHE PROP

FSIM

im1 im2 im3 im4 im5 im6

im7 im8 im9 im10 AVG

http://www.jchr.org/


Journal of Chemical Health Risks 

www.jchr.org 

JCHR (2024) 14(1), 1183-1196 | ISSN:2251-6727 

 
 

 

1193  

 
Fig. 7: SSIM chart 

 

4.2.4. UIQI performance 

Figure 8 illustrates the effect of the suggested strategy 

combined with different improvement strategies on UIQI. 

The following are highlighted points. 

• Almost all approaches provide good results in terms 

of the universal quality index, and the proposed 

strategy once again outperforms other established 

ways in terms of UIQI. The proposed approaches 

exhibit less distortion in terms of structure, brightness, 

and contrast.  

• MSR and AGCW also optimise the findings acquired 

from all test photos and take a higher value than the 

other methods. 

• The UIQI value is also kept in the case of DHE and 

LHE, although THE yields the lowest UIQI values, 

which are almost equal to 0.8. 

 

 
Fig. 8 UIQI chart 

 

4.2.5. PSNR performance  

Figure 9 illustrates the effect of planned and varied 

enhancing approaches on PSNR. The following 

information is noted: 

• The suggested approach displays the greatest signal-

to-noise ratio for each of the 10 test photos, with all 

values falling between 25 and 35. This results in the 

least amount of distortion and noise in the resulting 

picture. 

• MSR has the second highest PSNR score, which 

indicates that it is less distorted and noisy. The 

average PSNR value is presented in the average line 

graph after the DHE and LHE. 

• HE has the lowest PSNR score, which is about 10 for 

practically all of the ten photos, which is undesirable. 
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Fig. 9: PSNR chart 

 

5. Conclusion 

This article described a strategy for compressing 

histopathology photos with low contrast using a 

blended-based improved approach. The proposed 

scheme addresses issues such as over enhancement, 

under enhancement, improving contrast, enhancing 

details, and preserving naturalness by first 

implementing a luminance measuring method to obtain 

the brightness channel. Then, by selecting appropriate 

inputs and weights from the calculated luminance 

channel, the proposed scheme adequately addresses 

issues such as over enhancement, under enhancement, 

improving contrast, enhancing details, and preserving 

naturalness. The suggested approach is compared to a 

prominent existing picture enhancement technology in 

Table 3. From the evaluation of experimental outputs 

obtained using various enhancement techniques, it can 

be determined that the suggested strategy has the best 

control over mean brightness error, while THE and 

AGCW have the poorest values of AMBE. The 

suggested scheme's structural similarity index is 

maximal, as is the AGCW technique. The suggested 

technique preserves more features, and AGCE, MSR 

also performs well in the FSIM. Because LHE has a 

low AMBE value, it also has the lowest SSIM and 

FSIM values. The suggested technique has a very high 

universal quality index, and UIQI has also been shown 

to be the best for LHE, AGCW, and MSR. THE 

continues to provide unacceptable results when SSIM, 

FSIM, and UIQI are used. LHE and AGCW produce 

pictures with a modest amount of noise. The suggested 

system has the highest signal-to-noise ratio, followed 

by the MSR, which has the second-best signal-to-noise 

ratio, whilst THE has the highest noise content. This 

paper concluded that the suggested strategy produces 

more attractive outcomes in subjective and objective 

evaluations than other enhancement strategies currently 

available in the literature. 

 

 

Table 3 Overall Conclusion 
 PARAMETERS AMBE             SSIM FSIM UIQI PSNR  

THE VERY HIGH VERY LOW VERY LOW MODERATE VERY LOW 

LHE LOW LOW LOW HIGH MODERATE 

AGCW VERY HIGH HIGH HIGH HIGH MODERATE 

MSR MODERATE MODERATE HIGH HIGH HIGH 

DHE LOW MODERATE MODERATE HIGH MODERATE 

PROPOSED VERY LOW VERY HIGH VERY HIGH VERY HIGH VERY HIGH 
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