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Abstract 

The application of Active Region Contour Models (ARCMs) is a sophisticated method for precisely 

delineating brain tumors in MRI images. ARCMs, also known as active contours or snakes, 

dynamically evolve over the images, adapting to tumors' complex and irregular shapes. The 

segmentation process involves the initiation of a contour near the tumor boundaries, followed by 

iterative adjustments guided by internal and external forces. These contours' "active" nature allows 

them to handle intensity variations within MRI images, a common challenge in tumor imaging.This 

article explores the integration of artificial intelligence (AI) with the active region contour model, 

presenting an innovative approach that combines the adaptability of active contours with the power of 

AI for more precise and efficient brain tumor segmentation in MRI. 

 

1. Introduction 

Medical imaging has changed the face of modern 

healthcare by delivering non-invasive insights into the 

human body's complex architecture and function. 

Magnetic resonance imaging (MRI) is a sophisticated 

diagnostic tool that produces detailed images of soft 

tissues, including the brain. Brain tumor segmentation 

in MRI has been a focus of research and technological 

improvements, with the quest of more accurate and 

economical techniques driving continuous innovation 

[1], [2]. Brain tumors, which are defined by abnormal 

cell proliferation inside the brain, pose a substantial 

problem in the medical world[3]. The accurate 

segmentation of these tumors is critical for precise 

diagnosis, therapy planning, and patient monitoring. 

While the human brain's complexity makes this task 

difficult, technology advancements have opened the 

path for advanced segmentation approaches.Traditional 

techniques of brain tumor segmentation have difficulty 

reliably identifying tumor borders, particularly in 

situations with irregular forms and varied intensities[4]. 

Manual segmentation, while precise, is time-consuming 

and prone to inter-observer variability. Automated 

approaches have consequently become critical to 

expedite the segmentation process and improve 

repeatability. 

MRI, with its exceptional capacity to obtain exquisite 

soft tissue pictures, has emerged as the preferred 

technique for visualizing brain tumors[5]. The intrinsic 

contrast of MRI provides for obvious separation 

between tumor and healthy tissue, making it an 

excellent choice for segmentation investigations. 

However, the various nature of brain tumors, including 

changes in size, form, and location, needs improved 

tools for precisely defining tumor borders.Magnetic 

resonance imaging (MRI) outperforms computed 

tomography in the realm of medical diagnostics 

compared. Imaging enhances the contrast between 

various soft tissues in the human body. Due to its 

advantages in terms of safety and tissue contrast, MRI is 

the most used technology in brain imaging when 

compared to other modalities[6]. Many efforts have 

been made in recent years to develop human-free 

intervention approaches that can produce results 

equivalent to those obtained by physicians. A variety of 

supervised and unsupervised learning approaches have 

been explored for this aim [7]–[13]. 

The segmentation process usually starts with the 

creation of a contour near the probable tumor 

boundaries. This active contour then iteratively 

modifies its shape using a combination of internal 

pressures that promote smoothness and external forces 

that guide the contour towards the tumor margins. The 

continuous evolution of ARCMs provides flexibility, 

making them ideal for capturing the abnormalities 

commonly found in brain tumor borders.  

Active region contour models are deformable curves 

that evolve based on the minimization of an energy 

functional. The driving force behind their efficacy lies 

in the ability to adapt to image features, making them 

particularly well-suited for capturing intricate 

boundaries within medical images. The models operate 
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through an iterative process, adjusting their contours to 

minimize internal and external energies, facilitating 

precise segmentation.Active contour models are 

deformable, curve-evolving algorithms that minimize an 

energy functional. They adapt to image features, 

making them well-suited for capturing intricate 

boundaries of brain tumors. The models operate through 

an iterative process, adjusting the contour to minimize 

internal energy (encouraging smoothness) and external 

energy (driving the contour toward image features)[14]. 

At the center of active region contour models is an 

energy functional that includes both internal and 

exterior elements. Internal energy measures contour 

smoothness, which helps to prevent segmentation 

abnormalities. External energy from picture features or 

gradients directs the contour toward the image's 

important limits. This dynamic interaction guarantees 

that the contour converges on the target structures, 

allowing for precise and adaptable segmentation[15]–

[17]. 

The emergence of artificial intelligence, particularly 

deep learning, provides new avenues for enhancing the 

accuracy and efficiency of segmentation. This article 

explores the integration of AI with the active region 

contour model, presenting a cutting-edge approach that 

leverages the strengths of both methodologies. AI, 

particularly deep learning techniques like convolutional 

neural networks (CNNs), excels in feature extraction 

and pattern recognition[18]. By leveraging a CNN, the 

segmentation model can autonomously learn complex 

patterns and relevant features from the MRI data, 

enhancing the capability to distinguish tumor 

boundaries from surrounding tissues[19].The AI 

component introduces dynamic mask updating, 

continuously adapting the pre-fitting mask based on 

learned features. This addresses challenges associated 

with static masks, ensuring the segmentation model 

remains adaptable to evolving tumor characteristics 

throughout the segmentation process.AI assists in 

refining the initialization process, optimizing the 

starting point for the active contour model. 

Additionally, AI-driven algorithms contribute to more 

efficient convergence, overcoming challenges related to 

sensitivity to parameters and speeding up the 

segmentation workflow. 

In this paper, we provide a region-based active contour 

approach for automated brain tumor extraction from 

MR images. In general, brain tumor extraction from MR 

images using active contours requires the identification 

of a starting contour, which is challenging to achieve 

automatically, particularly in tumors with poor contrast 

and uncertain borders. To address the issue, we 

employed AI to determine the beginning boundary of 

the active contour method. Section 2 of the paper 

represents the mathematical formulation of the region 

based active contour model and section 3 of the paper 

shows the AI assisted methodology in creating the 

initial mask of the active contour. The proposed 

methodology and validation are shown in section 4. The 

results are shown in section 5 and section 6 concludes 

the research study.   

 

2. Region based active contour model 

The Region-Based Active Contour Model is a 

mathematical framework for image segmentation and 

object boundary delineation. It's also referred to as a 

region-based level set or geodesic active contour model. 

As per[20]the energy functional can be represented as, 

 

E(C, c1, c2) = λ1 ∫ ‖I(x) − c1‖2dx
outside C

+

 λ1 ∫ ‖I(x) − c2‖2dx
inside C

+ ν|C|            (1) 

 

Here I(x): Ω → ℜd is an image defined on domain Ω 

and the constants c1 and c2 approximates the image 

intensity inside and outside of the contour C with a 

length |C|. As per [21], the contour C can be represented 

in the image plane ( Ω → ℜd) as the zero level of an 

embedding Lipschitz-continuous function, ϕ: Ω → R, 

defined in a higher dimension, i.e. C = {x ∈ Ω|ϕ(x) =

0}. By minimizing using the steepest descent method, 

we can state that, 

 
∂ϕ

∂t
= |∇ϕ| {λ1(I − c1)2 + λ2(I − c2)2 + μ. div (

∇ϕ

|∇ϕ|
) −

ν}                       (2) 

Where  

c1 =
∫ IH(ϕ)dΩΩ

∫ H(ϕ)dΩΩ

           (3) 

c2 =
∫ I(1−H(ϕ))dΩΩ

∫ (1−H(ϕ))dΩΩ

          (4) 

 

The Heaviside function H(ϕ) and the delta function 

δ(ϕ) = H′(ϕ) can be approximated as  
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Hε(ϕ) =
1

2
(1 +

2

π
tan−1 (

ϕ

ε
))             (5) 

δε(ϕ) =
1

π

ε

ε2+ϕ2              (6) 

 

where is εa constant that has been set to 1.0[22]. Here 

the model follows an iterative optimization procedure in 

which the contour evolves to minimize the defined 

energy. Internal energy promotes smoothness and 

prevents irregularities, but external energy, generated 

from image gradients or features, draws the contour to 

the object borders. This energy reduction guarantees 

that the contour converges with the required structure, 

maximizing its representation inside the image.The 

adoption of an initial mask is an important step in the 

implementation of active contour area models, notably 

in medical picture segmentation. The initial mask serves 

as a starting point for the iterative optimization process, 

directing the contour toward the borders of the item of 

interest. In the setting of medical imaging, when precise 

delineation is critical, creating an effective initial mask 

becomes an essential part of the segmentation 

procedure. I'll go over the necessity of the first mask, 

techniques for creating it, and factors to consider 

ensuring its efficacy. 

 

3. Initial mask generation using AI 

The initial mask functions as a seed or region of 

interest, influencing the development of the active 

contour. A well-designed initial mask has a substantial 

influence on convergence speed, segmentation 

accuracy, and the model's capacity to adapt to 

complicated structures in an image. In medical imaging, 

where the aim is frequently to segment certain 

anatomical features or anomalies, the initial mask is 

critical in directing the active contour to the right 

bounds.Accurate initialization is required for active 

region contour models to converge on the genuine 

tumor borders. Traditional approaches frequently use 

manual or semi-automatic initialization, which can be 

time-consuming and subjective. Inaccuracies in 

initialization can result in inferior segmentation 

outcomes, reducing the models' reliability in clinical 

applications.The integration of AI into the segmentation 

pipeline introduces a transformative solution to the 

initialization challenge. Machine learning models, 

particularly convolutional neural networks (CNNs), are 

trained on annotated MRI data to learn patterns and 

features indicative of brain tumor locations[18]. The 

trained model performs feature extraction on new MRI 

data, generating a probability map that highlights 

potential tumor regions[23]. By applying thresholding 

to this map, binary masks are created, serving as the AI-

generated initial approximation of the tumor region. 

 

4. Propose methodology and validation 

The proposed methodology consists of multiple steps. 

First, MRI data is gathered and pre-processed to ensure 

image uniformity and quality[24]. Next, a CNN is 

trained on annotated data to learn the intricate patterns 

associated with brain tumors[23]. A probability map is 

created by extracting features from new MRI data. This 

map is then thresholded to produce binary masks[23], 

which comprise the AI-generated initial masks. These 

masks are smoothly integrated into the active region 

contour model, resulting in a more informed 

segmentation process.The fidg. 1 shows the schematic 

representation of AI assisted active contour model 

(ACM). 

Dice similarity coefficient [25] and Sensitivity (SE) are 

examinedto validate the proposed methodology. The 

Dice and sensitivity are defined as follows: 

Dice =  
2TP

2TP+FP+FN
                                                                    

(7) 

Sensitivity =  
TP

TP+FN
(8) 

Here, TP and TN represent True Positive i.e. existing 

tumour that was accurately identified and True Negative 

i.e. tumour that did not exist but was detected, 

respectively. FP and FN represent False Positive i.e. 

detection of previously undetected tumour and False 

Negative i.e. existing tumour that has not been detected, 

respectively. 

 

 
Fig 1. Schematic representation of proposed AI 

assisted active contour model 

 

5. Results and discussion 

The use of an active area contour model with AI 

assisted initial mask generation to segment brain tumors 

in MRI is a significant improvement in medical image 

analysis. This novel technique combines the flexibility 

of dynamic contour models with the precision of pre-
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fitting masks, providing a nuanced answer to the issues 

of brain tumor segmentation. The proposed 

methodology is tested with the MRI images as shows in 

fig 2. The input MRI is shown in fig. 2(a)  The image is 

pre-processed with median filter and the filtered image 

is shown in fig. 2(b). Fig. 2(c) is the initial mask 

generated using AI assisted methodology. In fig. 2(d), 

the centroid of the initial mask is shown in the input 

image which is generated using AI assisted method. The 

initial active contour is shown in fig. 2(e-i) for an 

arbitrary mask and the evolution of the contour are 

shown in fig. 2(e-ii) – 2(e-iv) for increasing 

iteration.The initial contour using proposed 

methodology around the centroid is shown in fig. 2(f-i) 

and the evolution of the contour are shown in fig. 2(f-ii) 

– 2(f-iv) for increasing iteration. It is easy to see that the 

using proposed methodology, the efficiency of active 

region contour model is much better than the 

considering any arbitrary initialization of contour.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e-i) 

 

(e-ii) 

 

(e-iii) 

 

(e-iv) 

 

(f-i) 

 

(f-ii) 

 

(f-iii) 

 

(f-iv) 

Fig 2.(a) input MRI (b) filtered using anisotropic diffusion (c) initial mask and center of the mask using proposed methodology 

(red dot) (d) centroid of mask in input image (e-i) initial contour using arbitrary mask (e-ii)-(e-iv) represents the evolution of 

contour in iteration 2, 6, 8, 10, 12, 14; (f-i) initial contour using proposed methodology and (f-ii)-(f-iv) represents the evolution 

of contour in iteration 4, 8, 12, 16. 
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The BraTS 2015 dataset is useful for segmenting 

images of brain tumors[26]–[30]. The collection 

includes 54 low-grade gliomas (LGG) and 220 high-

grade gliomas (HGG). HGG and LGG data from the 

2015 BRATS dataset are used to validate the suggested 

technique. The proposed AI assisted method is 

compared with the k-means methods of initial mask 

generation and the performance are shown in Table I. 

 

Table I: Average (±S.D.) of the similarity metrics for the proposed AI assisted method and using active 

contour model with k-means  

Active Contour model with Dice Sensitivity Average number of iterations 

k-means 0.8979±0.025 0.8857±0.074 28±3 

Proposed method 0.9019±0.031 0.9037±0.085 17±7 

 

The integration of AI assisted initial mask generation 

into the segmentation process addresses one of the 

longstanding challenges in medical image analysis — 

the need for accurate initialization. The use of AI-

generated first masks has various benefits. For starters, 

it considerably decreases the need for manual or semi-

automatic initialization approaches, which streamlines 

the segmentation procedure. Second, the AI-driven 

approach takes advantage of neural networks' innate 

capacity to detect complicated patterns, increasing the 

accuracy of the initial masks. Third, the methodology is 

applicable to diverse tumor forms and imaging 

circumstances, making it a flexible option for a variety 

of clinical contexts. Quantitative metrics, such as the 

Dice coefficient and sensitivity, are employed to 

evaluate the performance of the proposed methodology. 

Comparisons with traditional methods are made to 

showcase the superiority of the AI-assisted active 

region contour model in terms of segmentation accuracy 

and efficiency.  

 

6. Conclusion 

The integration of AI for the generation of initial masks 

for active region contour models represents a significant 

advancement in the field of brain tumor segmentation. 

This collaborative approach addresses the longstanding 

challenge of accurate initialization, providing a more 

precise and efficient means of delineating tumor 

boundaries in MRI. As technology continues to evolve, 

this methodology stands at the forefront of innovations 

in medical image analysis, offering a promising avenue 

for improved diagnostic capabilities and patient care in 

neuroimaging. The symbiosis between AI and active 

region contour models signifies a paradigm shift, 

marking a new methodology in the quest for more 

accurate and reliable brain tumor segmentation 

techniques. 
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