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ABSTRACT:  

The energies of the K-shell, as well as the atomic characteristics of the (Ne, Na, Mg, Al, and Si) atoms were 

computed using the algebraic approximation of the Hartree-Fock method(HF) and compared to some 

experimental results from extensive studies. The calculated atomic energies for atomic number (10 ≤ Z ≤ 14) 

were assessed. The study demonstrated that the estimates used to calculate the atomic properties using this 

method were accurate. The function f(r12) for the inter-particle distribution is one of the atomic characteristics. 

According to this approximation, the two techniques should yield values for the one-particle radial density 

distribution function D(r) ,( <r1
n> , <r12

n>), where n is an integer number from  -2 to 2, and the standard deviation

1
r and

12
r . The properties of the energies expectation values are repulsion potential energy < Vee >, 

attractive  potential energy< Ven > , total potential energy <V> , kinetic energy <T> and total energy <E>. In 

conclusion increasing the atomic number leads to an increase in all values studied energies. Finally, the 

equations were programmed in Mathematics 2015 and all calculations were calculated in atomic units. 
 

 

1. Introduction 

         Planetary motion, additionally to the behavior of 

electrons and subatomic particles, according to quantum 

mechanics. As a result, In quantum mechanics, there is 

classical mechanics as a subset. Even though they have 

the beginning condition, In the quantum theory, events 

are not deterministic but rather depend on probability, 

with one significant exception. Quantum theory is the 

theory of probability since it is a statistical theory, even 

for a single particle. The choices are not limited to the 

nature of the state that serves as the representation of the 

method or the number of states that need to be 

normalized in the system [1]. 

Schrodinger introduced wave mechanics into the 

collection of ideas, equations, interpretations, and 

theories that were common in order to explain the 

growing body of observations of the wave equation that 

it obeys. The basis for our current understanding of 

quantum phenomena and the mathematical techniques 

we use to test them is Schrodinger's wave mechanics. 

The Schrodinger equation with time independence [2]. 

𝐻̀𝜓 = 𝐸𝜓                                                                1                                                                                                    

Where 𝜓 denotes the wave function and controls how 

the electron behaves. The Schrödinger equation was 

discovered to be an Eigen value equation when stated as 

in equation (1), hence the equation becomes [3]. 

{(operator). (function) = constant factor × same 

function} 

The eigenvalue of the operator H is designated as E. The 

Hamiltonian operator, which is defined for a single 

electron of an atom with a charge of Ze, is the 

component H in equation (1), where the Eigen function 

is the wave function corresponding to the energy [4 ] . 

𝐻̂ = −
ℏ2

2𝑚
∇2 −

𝑍𝑒2

𝑟
                                                      2               

Where  ℏ =
ℎ

2𝜋
  , h : is Planck's constant, 𝑚𝑒:  is the mass 

of an electron and  ∇2: Laplacian operator, which can be 

written in spherical coordinate (𝑟, 𝜃, 𝜙) as follows [5]. 
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∇2=
1

𝑟2  
𝜕

𝜕𝑟
(𝑟2 𝜕

𝜕𝑟
) +

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕

𝜕𝜃
) +

1

𝑟2 sin 𝜃
(

𝜕2

𝜕𝜙2)                                     

3 

 

The Hamiltonian for an atom with N electrons is given 

by [6]: 

ℋ̂ = −
ℏ2

2𝑚𝑒
∑ ∇2

𝑖 + ∑
𝑍𝑒2

𝑟𝑖

𝑁
𝑖=1

𝑁
𝑖=1 + ∑ ∑

𝑒2

𝑟𝑖𝑗

𝑁
𝑗>𝑖

𝑁
𝑖=1                                                    

4  

 As a result, the kinetic energy operator is the first 

component for N-electrons, while potential energy is the 

second term for the attraction of the electrons to the 

charge nucleus. The final item is the potential energy of 

the electron, and Ze, 𝑟𝑖 is the separation between the 

nucleus and the electron [7]. At an infinite distance from 

the nucleus' center, this term equals 0. The constraint j > 

i  prevents counting the same inter electronic repulsion 

twice and avoids expressions like 
𝑒2

𝑟𝑖
. An electron's 

potential energy in an atom is a negative amount since it 

is lower than when the nucleus and electron are 

separated by an infinite distance [8]. Because of the 

inter-electronic repulsion factors
𝑒2

𝑟𝑖𝑗
 , the Schrödinger 

equation for the atom cannot be separated [9]. The 

atomic Hartree-Fock equations have numerical 

computational methods developed by Froese Fischer 

[10]. a solitary substance The Green's function approach 

and related many body approaches have been used 

frequently to determine the ionization and electron 

attachment spectra of atoms and molecules. Recent 

review papers provide thorough descriptions of the 

various techniques created in this topic as well as an 

overview of applications [11]. 

For the ground states of all the neutral atoms from He to 

Xe, singly charged cations from Li+ to Cs+, and stable 

singly charged anions from H- to I-, improved Roothaan-

Hartree-Fock wave functions are presented [12]. Mg is 

one of the two-electron atomic systems explored in this 

paper, along with the ions Al+1, Si-2, P+3 and S+4. Hartree-

Fock approximation is used to calculate the atomic 

parameters, such as the one electron radial density 

function D(r1) [13] . The study of the atomic system with 

two electrons covered the wave functions of the neutral 

atoms O, F, and Ne [14]. The treatments were used on 

diatomic molecules like Li2, N2, F2, and Se2 as well as 

the atoms in group 15 of the periodic table, which 

include 7N, 15P, 33As, 51Sb, 83Bi, and 115U up. Three 

fundamental techniques—basis-set, Hamiltonian, and 

method type—were dependent on the treatments [15] . 

Another investigation of intraocular densities, Coulomb 

holes, and high-accuracy correlation energies for the 

lithium cation, helium, hydride ion, and system with the 

crucial nuclear charge, ZC, for binding two electrons. A 

Laguerre-based wave function is used to calculate both 

the completely correlated (FC) and Hartree -Fock (HF) 

wave functions [16]. Consequently, the goal of our 

research was to examine the energy of atoms in this orbit 

that have two electrons. 

2. Calculations 

Many important atomic properties of studied ions are 

discussed below: 

2.1 Radial density distribution function D(r1) for one 

particle 

Using the electron radial density distribution function as 

in equation (5), the researchers calculated the likelihood 

of finding an electron in a spherical shell at a radius of 

r1 from the nucleus  ]17[  

D(r1)= R1s2 (r1)R1s
2 (r2)    5                                                                    

2.2 Inter-particle Distribution Function    :[18 ]   

The pair distribution function from the following 

equation was evaluated (6)  
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Is is the coulomb repulsion of two electrons in a k-shell 

with opposite spins, which was used to determine the 

relationship between )( 12rf  and inter-electronic 

distance r12. 

2.3 One –particle expectation value < r1
m >  

We calculated the one-particle expectation value  by using 

equations (7) [19]: 

< r1
m > =

1

0

1
)( drrD r

m




                            7                                                               

For m, an integer number that takes the values, 

successively for various values  -2 ≥ m ≥ 2 ,the results of 

the radial expectation values of < r1
m > and standard 

deviation. 

2.4 Inter-particle Expectation Value  mr12  

Using the equation (8) below, we assessed the inter-

particle expectation value  mr12  [20]:      
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  


=
0

12121212 )( drrrfr
mm                 8                                                        

which show the relationship between  mr12 with( 

m). 

 

2.5 The expectation value for energy E   

The total energy and the potential energy were calculate 

by using equations (9 and 10)[21]:     

VE
2

1
=                                                                                      9                                   

121

11

rr
ZV +=

                                                                            10 

3. Results and Discussions 

Through the use of the above equations, the results were 

tabulated and plotted using the Mathematics 15 program: 

 

Table 1. Lists the values of the positions for the analyzed 

atoms that correspond to the distribution function. 

Atomic 

propertie

s 

Atoms 

Ne Na Mg Al Si 

r1 
0.102

0 

0.093

0 

0.086

0 

0.079

0 

0.073

0 

Dmax(r1) 
5.142

3 

5.672

5 

6.207

2 

6.742

3 

7.276

6 

r12 
0.174

0 

0.157

0 

0.144

0 

0.133

0 

0.123

0 

fmax.(r12) 
3.770

9 

4.155

8 

4.547

7 

4.939

6 

5.337

0 

 

 

 

 

 

 

 

 

Figure 1. shows the connection between the examined 

atoms' distance r1 and the radial distribution function  

D(r1). 

 

 

 

 
 

 

Figure 2. Shows the connection between the examined 

atoms' distance (r12) and the inter-particle distribution 

function (f(r12). 

 

From Table 1 and Figures 1 and 2, we obtained several 

results, due to the maximum values for D(r1) rise as r1 gets 

higher, detecting an electron becomes more likely as the 

gap between the nucleus and the electron narrows. 

Additionally, we observe that these peaks are 

concentrated closer to the nucleus, which is also where we 

observe the maximum probability density distribution 

function for the systems under study. When D(r1) = 0 is 

attributed to r = 0 when the distance from the system 

equals zero, the chance of finding an electron is zero, 

indicating that the electron was not found in the nucleus. 

In contrast, when r =, D(r1) = 0, is attributed to r =∞, the 

chance of discovering an electron is zero, indicating that 

the electron is not discovered in the atom.  

Additionally, Table 1 demonstrates how, for the systems 

under study, the relationship between inter-distance r12 

and maximum values of the inter-particle distribution 

function )( 12rf  led us to notice that, as Z increases, the 

maximum value )( 12rf  increases and, conversely, the 

inter-particle distance decreases due to an increase in 

atomic number, which increases the nucleus-electron 

attraction force and reduces the distance between 

electrons. 

The distance r12 between two electrons decreases as 

atomic number increases, contrary to the trend seen in 

figure 3 where the inter-particle distribution function 

increases as each shell shrinks near the nucleus  ,r12 = 0 , 

)( 12rf  = 0 and When r12 =   , )( 12rf = 0 because the 

coulomb interaction is ignored when there is a significant 

distance between two electrons. The relationship between 

(r1) and Dmax(r1) was likewise depicted, and it was a 

direct linear relationship. The relationship between (r12) 

and f(r12) similarly exhibited same pattern. 
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Table 2. Lists the one-particle expectation values for 

various (m) values. 

Atoms 
2

1

−r  
1

1

−r  
1

1r  
2

1r  

Ne 187.289550 9.618780 0.157710 0.033510 

[22] 187.197184 9.618054 0.157631 0.033470 

Na 227.538390 10.60336 0.143030 0.027580 

[22] 227.533835 10.607384 0.142858 0.027481 

Mg 271.975590 11.596050 0.130740 0.023030 

[22] 271.847138 11.597954 0.130594 0.022956 

Al 320.300750 12.586440 0.120410 0.019540 

[22] 320.129366 12.589248 0.120258 0.019459 

Si 372.63133 13.57914 0.11156 0.016770 

[22] 372.382224 13.581150 0.111431 0.0167011 

 

All examined systems are shown in Table 2, and we 

discovered that the one-particle expected value < r1
m > 

increases as the atomic number rises and decreases as m 

becomes negative ( -2 ,-1 ) where the 
1

1

−r  is related to 

the attraction energy expectation value < Ven > = -Z[N. 
1

1

−r  ] , N denotes the number of electrons in the shell, 

and 
2

1

−r  demonstrates how the distribution of density 

is dispersed near the nucleus. Additionally, we saw that 

the one-expectation value grows as Z increases < r1
m > 

begins decreasing for (m) positive values (+1, +2) , where 

1

1r  represents the distance between electron and 

nucleus. 

Table 3 .Represents of expectation values  mr12  

when -2≤ m ≤ 2 . 

Atom

s 

2

12

−r  
1

12

−r  
1

12r  
2

12r  

Ne 61.24045

7 

5.97170

3 

0.23051

2 

0.06703

8 

Na 74.43582

5 

6.58265

7 

0.20903

8 

0.05515

2 

Mg 89.05579 7.2010 0.19105 0.04606

0 

Al 104.9453

2 

7.81785 0.17596 0.03909

0 

Si 122.1830

6 

8.43654 0.16301 0.03354

0 

 

From analyzing the inter-particle expectation value 

 mr12   displayed in Table  3, we noted that the 

inter-particle expectation value   mr12 increases 

when Z increases and when (m) takes values -2,-1 , where 

1

12

−r  represents repulsion energy between two-

electrons. But when (m) takes positive values +1,+2 , the 

inter-particle expectation value decreases with Z 

increasing .  

The expected values for the investigations of the atomic 

attraction, repulsion, kinetic, and Hartree -Fock energies 

are all provided in Table 4 for the aforementioned 

equations. 

 

Table 4. Expected values of (Attractive  potential , 

Repulsive potential energies, kinetic energy and total 

energy( Hartree –Fock energy) and global comparison. 

ATO

MS enV−
 

eeV  V−  T  HFE−  

Ne 
192.3

76 

5.971

70 

186.40

400 

93.201

94 

93.201

94 

 [14]  
192.3

512 

5.970

08 

186.38

112 

93.19

056 

93.190

56 

Na 
233.27

392 

6.582

657 

226.69

1 

113.34

60 

113.34

60 

Mg 
278.30

5 

7.201 271.10

4 

135.55

21 

135.55

21 

Al 
327.24

7 

7.817

85 

319.43 159.71

479 

159.71

479 

Si 
380.2

16 

8.436

54 

371.77

9 

185.88

969 

185.88

969 

 

The results of the anticipated values for the two-electron 

repulsion potential energy 
eeV  and the nucleus-

electron attraction potential energy 
enV  are shown in 

Table 4. 

The total energy or Hartree-Fock energy expectation 

values are in line with previously reported findings. Both 

enV  and 
eeV  for atoms increase as atomic number 

increases. All shells start to constrict toward the nucleus 

because of the stronger attraction between the proton and 

electrons when the distance between the nucleus-electron 

and electron-electron reduces. 

 Both the attraction potential energy and the repulsion 

potential energy rise as a result. The total potential energy 

expectation values V   increase in each system because 

the increase of
enV  is higher than  that of 

eeV . In 

order to keep the atom's entity intact, it has also been 

found that when Z increases, the energy of attraction 

increases more than the energy of repulsion.  

Moreover, the expectation energy for kinetic energy T  

increases when Z increases. The total energy or Hartree-
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Fock energy becomes larger when Z increases, which also 

indicates the
HFE  as a function of Z . 

  In order to sustain the entity of the atom, we observed 

that the energy of attraction increases more rapidly than 

the energy of repulsion does as Z increases. The energy 

of kinetic energy T  increases as Z increases. Likewise, 

as Z increases, the total energy or Hartree -Fock energy

HFE  similarly increases, indicating the function of Z. 

 

Conclusions   

 

According to the results of the current study, the 

maximum values for the inter-particle distribution 

function )( 12rf  and the one-particle radial density 

distribution function D(r1) increase as Z increases, but 

their positions decrease as Z increases for some atomic 

properties for some atoms (Ne, Na, Mg, Al, and Si).  

For one-particle expectations for both < r1
m >, and the 

expectation of two particles  mr12  increase when 

Z increases and when ( m = -2 , -1) and both decrease 

for (m = +2 ,+1) when  m = zero
0

1r . This value 

represents the normalization condition . The expectation 

values of all the energies must also be specified 
enV ,

eeV  , V , T  and HFE   a rise as the atomic 

number rises. 
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