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ABSTRACT: The objective of the present study is to discuss the dispersion of non-buoyant air 

pollutants emitted from point source in the atmosphere, where some kind of removal mechanism 

is taking place. In this paper, a partial differential equation describing unsteady state dispersion 

of non-buoyant pollutants is solved by considering the wind velocity in the form of wave 

function that varies with downwind distance. Besides wind velocity, the various other factors like 

downwind distance, vertical distance, and cross-wind distance are also considered. The 

concentration of pollutants is calculated and variations of concentration profile with various 

factors are shown and results are analyzed. 

 

1. Introduction 

With the rapid expansion in the global population, 

transportation and industrialization environmental 

contamination, especially air pollution has become a 

serious problem for the living organisms. Among 

various types of environment pollutions, air pollution is 

most hazardous and poses threat to life of human 

beings and other species on earth.  

Air pollutants are harmful airborne substances that 

threaten human welfare, harm vegetation and affect 

visibility which gives climate change. Now-a-days, air 

pollution is one of the biggest problems, not only 

because it contributes to climate change but also 

because it affects public and individual health by 

raising morbidity and mortality rates. Air pollutants 

play roles indifferent kinds of human diseases 

(Manisalidi et al., 2020). Particulate matters (PM), are 

one of them which are particles with varying but 

extremely small diameters that enter the human 

respiratory system through inhalation and can lead to 

cancer, cardiovascular, and central nervous system 

disorders, as well as respiratory and other diseases. Air 

pollutants come from either natural source or 

anthropogenic (human) sources. The distinction 

between two sources of pollutants is not always clear. 

Natural sources of air-pollutants include ash and dust 

from volcanoes, wind-entrained dust from natural land 

surfaces, smoke and ash from wildfires (Whiteman, 

2000). 

Primary pollutants can be emitted and secondary 

pollutants can be produced in the atmosphere as a 

result of chemical or physical reactions of primary 

pollutants when exposed to other components of air 

including water vapor. Some secondary pollutants can 

be from photo-chemical reactions. Pollutants can (such 

as photo-chemical smog or ozone) also come from 

point source, line source, area source or volume source. 

The emission of pollutants may be continuous or 

intermittent and the source strength may be constant or 

variable. Dispersion of pollutants is also effected by 

source position.  

Lead, sulfur oxides, nitrogen oxides, carbon monoxide, 

particle pollution, and ground-level ozone are the six 

main air pollutants that the World Health Organization 

(WHO) monitors. Air pollution can have a catastrophic 

impact on soil, groundwater, and other environmental 

elements. It also presents a significant risk to living 

things. There are significant ecological effects of acid 

rain, global warming, greenhouse effect, and climate 

change on air pollution (Wilson and Suh, 1997). 

 Moreover, dioxins, sulfur dioxide, nitrogen oxide, 

dioxin-containing volatile organic compounds (VOCs), 

and polycyclic aromatic hydrocarbons (PAHs) are all 

regarded as hazardous air pollutants for human health. 
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High levels of carbon monoxide can even cause direct 

poisoning through inhalation. Depending on the extent 

of exposure, heavy metals like lead can cause either 

acute poisoning or long-term intoxication when 

absorbed into the human body. Air pollution affects 

people's health in many ways. The low levels of air 

pollution can also have an impact on the health of 

vulnerable and sensitive people. The following 

conditions are strongly associated with short-term 

exposure to air pollution: asthma, respiratory diseases, 

wheezing, coughing, shortness of breath, and high rates 

of hospitalization (Manisalidis, 2020). 

The importance and the need of mathematical 

modelling are well known in the scientific community. 

There are various modeling approaches that have been 

used effectively in the past to deal with the dispersion 

of air pollutants. Also, persistent efforts are being 

made to improve the accuracy of predictions using 

latest advancements in the computing technology and 

improvement in the observational and modelling 

framework (Sharan et al., 2003). 

Sharan et al., 1996 made an attempt to review the 

major research concerning atmospheric dispersion 

modelling in the last few decades. Sharan et al. have 

formulated a mathematical model for low wind 

conditions by taking into account the diffusion in the 

downwind direction (Sharan et al., 2003, 1996). 

 Srivastava et al., 2009 have presented a three 

dimensional atmospheric diffusion model with 

variable removal rate and variable wind velocity using 

power law profile. 

Nirmaladevi et al., 2018 has presented a three 

dimensional analytical model for the dispersion of air 

pollutants emitted from elevated point source with 

mesoscale wind. 

Verma, 2011 has given an analytical approach to the 

solution of the problem of dispersion of an air 

pollutant in steady state condition with constant wind 

velocity and constant removal rate taking eddy 

diffusivities as constant. 

Agarwal et al., 2008 have solved an unsteady state 

three- dimensional atmospheric diffusion equation 

with a point source assuming that the wind velocity 

vary with downwind distance in the form of wave 

function and removal rate as constant.  

The analytical solutions for advection–diffusion 

equation with different conditions and cases of the 

wind speed and eddy diffusivity have been studied by 

several researchers ( Verma et al., 2011, Verma et al., 

2016, Verma et al., 2015). 

 Particulates have the tendency to settle down on the 

ground of the atmosphere, and so their non-buoyant 

nature must be taken into consideration (Agarwal and 

Shukla, 2002). This is done by introducing a negative 

sink velocity in the vertical direction. Again, it is 

essential to use suitable boundary conditions for perfect 

observations of the dispersion process. Apart from the 

boundaries in the atmosphere, several removal 

processes (e.g., removal by rain or fog droplets, 

deposition on vegetative canopies, artificial removal by 

the introduction of some chemical species, etc.) are 

observed. Alam and Seinfeld 1981 have been studied 

the effects of removal mechanisms on the dispersion 

process. 

In view of the above, in this paper, a study has been 

made to discuss the dispersion of non-buoyant air 

pollutants emitted from point source in an atmosphere, 

where some kind of removal mechanism is taking 

place. Here, we consider wind velocity in the form of 

wave function that varies with downwind distance. 

Further, Eddy diffusivity coefficients are taken to be 

constant. For solving the model, we have applied 

integral transform methods (i.e., Laplace transform and 

Fourier transform). A Dirichlet-type boundary 

conditions are used, which indicate total absorption at 

the ground and inversion layers. 

 

2. Mathematical Model  

The partial differential equation describing the 

unsteady state of dispersion of non-buoyant pollutants 

is given by 
∂C

∂t
+ 𝑈

𝜕𝐶

𝜕𝑥
− 𝑤𝑠

𝜕𝐶

𝜕𝑧
=

𝜕

𝜕𝑦
(𝐾𝑦

𝜕𝐶

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾𝑧

𝜕𝐶

𝜕𝑧
) − 𝛼𝐶 

    (1) 

where C is the concentration of the pollutants , t is  

time, 𝛼 is the constant removal rate of pollutants, and 

Ky and Kz are the eddy diffusivities in the y and z 

directions, respectively, U is the wind velocity and ws 

is the sink velocity. We consider the pollutant emitted 

from a point source of strength Q, which is located at 

stack height hs. Here, the wind velocity U is taken in 

the form of a wave function as   𝑈 = 𝑈0(1 +

 𝜀𝑐𝑜𝑠
2𝜋𝑥

𝜆
), where Uo is the mean wind velocity, λ is the 

wave length, and 𝜀 is the amplitude ratio. The effect of 

buoyancy on the trajectory motion of the heavy 

pollutant is modeled by prescribing a negative sink 

velocity (-ws) in the z direction, where ws = |ws|. 
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The initial and boundary conditions for the system (1) 

are taken as follows: 

𝐶(𝑥, 𝑦, 𝑧, 𝑡) = 0,      𝑡 = 0  (2) 

𝐶(𝑥, 𝑦, 𝑧, 𝑡) =
𝑄𝛿(𝑦)𝛿(𝑧−ℎ𝑠)

𝑈(𝑥)
,   𝑥 = 0, 𝑡 ≥ 0, 0 ≤ ℎ𝑠 ≤ 𝐻 

    (3) 

𝐶(𝑥, 𝑦, 𝑧, 𝑡) = 0,     𝑦 → ±∞, 𝑡 ≥ 0 (4) 

𝐶(𝑥, 𝑦, 𝑧, 𝑡) = 0,     𝑧 = 0, 𝑡 ≥ 0 (5) 

𝐶(𝑥, 𝑦, 𝑧, 𝑡) = 0,     𝑧 = 𝐻, 𝑡 ≥ 0 (6) 

Condition (5) and (6) together are Dirichlet's type 

conditions, which imply perfectly absorbent 

boundaries. In other words, Dirichlet's boundary 

conditions indicate that contaminants are removed 

immediately upon contact with the boundaries, 

resulting in a significant concentration gradient in the 

vertical direction (Lin and Hildemann, 1996). 

 

3. Method of Solution 

The partial differential equation (1) describing the 

unsteady state of dispersion of non-buoyant pollutants 

and the boundary conditions are made dimensionless 

by using the following dimensionless quantities: 

𝜆∗ =
𝐾𝑧𝜆

𝑈0𝐻2 , 𝑡∗ =
𝐾𝑧𝑡

𝐻2 , 𝐶∗ =
𝑈0𝐻2𝐶

𝑄
, 𝑥∗ =

𝐾𝑧𝑥

𝑈0𝑥2 , 𝛼∗ =

𝛼𝐻2

𝐾𝑧
, 𝑦∗ =

𝑦

𝐻
, 𝑤∗ =

𝑤𝑠𝐻

𝐾𝑧
. 

On dropping astricks (*) and using U= 𝑈0[1 +

𝜀cos (
2𝜋𝑥

𝜆
)] , the equation (1) becomes  

∂C

∂t
+ [1 + 𝜀cos (

2𝜋𝑥

𝜆
)]

𝜕𝐶

𝜕𝑥
− 𝑤

𝜕𝐶

𝜕𝑧
= 𝛽

𝜕2𝐶

𝜕𝑦2
+

𝜕2𝐶

𝜕𝑧2
− 𝛼𝐶 

     (7) 

where 𝛽 =
𝐾𝑦

𝐾𝑧
 and boundary conditions become 

𝐶 = 0,    𝑡 = 0   (8) 

𝐶 =
𝑄𝛿(𝑦)𝛿(𝑧−ℎ𝑠)

(1+𝜀cos (
2𝜋𝑥

𝜆
))

,   𝑥 = 0, 𝑡 ≥ 0,  (9) 

𝐶 = 0,    𝑦 → ±∞, 𝑡 ≥ 0  (10) 

𝐶 = 0,    𝑧 = 0, 𝑡 ≥ 0   (11) 

𝐶 = 0,   𝑧 = 1,   𝑡 ≥ 0    (12) 

Taking the Laplace transform of equation (7), w. r. t. 't' 

,  we get 

𝑆𝐶̅ + [1 + 𝜀cos (
2𝜋𝑥

𝜆
)]

𝜕𝐶̅

𝜕𝑥
− 𝑤

𝜕𝐶̅

𝜕𝑧
= 𝛽

𝜕2𝐶̅

𝜕𝑦2
+

𝜕2𝐶̅

𝜕𝑧2
− 𝛼𝐶̅ 

                             (13) 

where bar (−) denotes the Laplace transform of the 

function and 'S' is the corresponding Laplace transform 

parameter. 

Again, taking the Fourier transform of equation (13) w. 

r. t. 'y', we get  

[1 + 𝜀cos (
2𝜋𝑥

𝜆
)]

𝜕𝐶̂

𝜕𝑥
+ (𝛼 + 𝑆 + 𝛽𝑝2)𝐶

̂
=

𝜕2𝐶̂

𝜕𝑧2
+ 𝑤

𝜕𝐶̂

𝜕𝑧
 

       (14)  

where cap (∧) denotes the Fourier transform of the 

function and p is the corresponding Fourier transform 

parameter. 

Using the above-mentioned integral transforms 

(Laplace and Fourier transforms), the boundary 

conditions (8-12) become 

𝐶̂ =
𝑄𝛿(𝑧−ℎ𝑠)

𝑆[1+𝜀cos (
2𝜋𝑥

𝜆
)]

,                𝑥 = 0 (15)  

𝐶̂ = 0,                                  z = 0 (16) 

𝐶̂ = 0,                                      𝑧 = 1 (17) 

 To use the method of separation of variables for 

solving equation (14), we take 

𝐶̂ =  M(𝑥) N(𝑧)   (18) 

where M(𝑥) and N(z) are the functions of 𝑥 and z, 

respectively. 

Using (18) in (14), we get the following two ordinary 

differential equations: 

[1 + 𝜀cos (
2𝜋𝑥

𝜆
)]

𝑑𝑀

𝑑𝑥
+ (𝛼 + 𝑆 + 𝛽𝑝2 + 𝑘2)𝑀 = 0 

    (19)  

𝑑2𝑁

𝑑𝑧2 + 𝑤
𝑑𝑁

𝑑𝑧
+ 𝑘2𝑁 = 0  (20) 

where k2 is a separation constant. 

For the solution of equation (19), we write it in the 

form   

 [1 + 𝜀cos (
2𝜋𝑥

𝜆
)]

𝑑𝑀

𝑑𝑥
= −(𝛼 + 𝑆 + 𝛽𝑝2 + 𝑘2)𝑀    

or   
𝑑𝑀

𝑀
+

(𝛼+𝑆+𝛽𝑝2+𝑘2)

(1+𝜀cos (
2𝜋𝑥

𝜆
))

𝑑𝑥 = 0 

which on integration gives 

 𝑙𝑜𝑔𝑀 = −(𝛼 + 𝑆 + 𝛽𝑝2 + 𝑘2) ∫
𝑑𝑥

[1+𝜀cos (
2𝜋𝑥

𝜆
)]

=

−(𝛼 + 𝑆 + 𝛽𝑝2 + 𝑘2) ∫
𝑑𝑥

(1−𝜀)+2𝜀 𝑐𝑜𝑠2(
𝜋𝑥

𝜆
)
 

which can also be written as  

 𝑙𝑜𝑔 𝑀 =  −(𝛼 + 𝑆 + 𝛽𝑝2 + 𝑘2) ∫
𝑠𝑒𝑐2(

𝜋𝑥

𝜆
)

(1−𝜀)𝑠𝑒𝑐2(
𝜋𝑥

𝜆
)+2𝜀

𝑑𝑥 

or  𝑙𝑜𝑔 𝑀 =  −
𝜆(𝛼+𝑆+𝛽𝑝2+𝑘2)

𝜋√1−𝜀2
tan−1 [𝑡𝑎𝑛 (

𝜋𝑥

𝜆
√

1−𝜀

1+𝜀
)] +

𝑙𝑜𝑔𝐶1 

where C1 is the arbitrary constant of integration. 

or  𝑀 = 𝐶1𝑒𝑥𝑝 [−(𝛼 + 𝑆 + 𝛽𝑝2 + 𝑘2)]𝑔(𝑥) 

     (21) 

where 𝑔(𝑥) =  
𝜆

𝜋√1−𝜀2
tan−1 [𝑡𝑎𝑛 (

𝜋𝑥

𝜆
√

1−𝜀

1+𝜀
)]  

     (22) 

Now, the solution of equation (20) is given by  

𝑁(𝑧) =  𝐶2𝑒
[{

−𝑤+√𝑤2−4𝑘2

2
}]𝑧

+ 𝐶3𝑒
[{

−𝑤−√𝑤2−4𝑘2

2
}]𝑧

 

    (23) 
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where C2 and C3 are another arbitrary constants of 

integration. 

Now, using (16) and (17) in (23), we get the following 

eigen value equation: 

2 kn=w, where n = 1, 2, 3,… 

Putting the values of M(x) and N(z) in equation (18), 

we get the solution as 

𝐶̂ = ∑ 𝐶𝑛𝑒{−(𝛼+𝑆+𝛽𝑝2+𝑘𝑛
2)𝑔(𝑥)}∞

𝑛=1   =

[𝑒(
−𝑤+√𝑤2−4𝑘𝑛

2

2
)𝑧 + 𝑒(

−𝑤−√𝑤2−4𝑘𝑛
2

2
)𝑧]    (24) 

where Cn=C1C2C3    

From boundary condition (15), we get 

 
𝑄𝛿(𝑧−ℎ𝑠)

𝑆(1+𝜀)
= ∑ 𝐶𝑛𝑓𝑛(𝑧)∞

𝑛=1     (25) 

where fn(z) is given by equation (23). 

Multiplying throughout by fm (z) and integrating w.r.t. 

z from 0 to 1, we get 

 ∫
𝑄𝛿(𝑧−ℎ𝑠)𝑓𝑚(𝑧)

𝑆(1+𝜀)
= ∑ 𝐶𝑛 ∫ 𝑓𝑛(𝑧)𝑓𝑚(𝑧)𝑑𝑧

1

0
∞
𝑛=1

1

0
 

Using the results ∫ 𝛿(𝑧 − ℎ𝑠)𝑓𝑚(𝑧)𝑑𝑧 =
1

0
𝑓𝑚(ℎ𝑠) and  

∫ 𝑓𝑚(𝑧)𝑓𝑛(𝑧)𝑑𝑧 =
1

0
0 𝑖𝑓 𝑚 ≠ 𝑛, we get 

  𝐶𝑛 = ∑
𝑄𝑓𝑛(ℎ𝑠)

𝑆(1+𝜀) ∫ {𝑓𝑛(𝑧)}21
0 𝑑𝑧

∞
𝑛=1   (26) 

Therefore, using the value of 𝐶𝑛 from (26), the value of  

𝐶̂ becomes 

𝐶̂ = ∑
𝑄𝑒

−(𝛼+𝑆+𝛽𝑝2+𝑘𝑛
2)

𝑔(𝑥)𝑓𝑛(ℎ𝑠)𝑓𝑚(𝑧)

𝑆(1+𝜀) ∫ {𝑓𝑛(𝑧)}21
0 𝑑𝑧

∞
𝑛=1  (27) 

Now, taking inverse transforms of equation (27), we 

get 

𝐶 =  
1.414𝑄𝐻(𝑡 − 𝑔(𝑥))

√𝛽𝑔(𝑥)
 𝑒𝑥𝑝 {−

𝑦2

4
𝛽𝑔(𝑥)}. 

              ∑
𝑓𝑛(ℎ𝑠)𝑓𝑛(𝑧)

(1+𝜀) ∫ {𝑓𝑛(𝑧)}2𝑑𝑧
1

0

𝑒−(𝛼+𝑘𝑛
2)𝑔(𝑥)∞

𝑛=1    (28) 

where H(t − 𝑔(𝑥) ) is the Heavy side function and 

𝑔(𝑥) is given by (22). 

 

4. Results and Discussion 

Here, the case of dispersion of non- buoyant air 

pollutants by a continuous point source, where the 

wind velocity is taken in the form of wave function 

varying with downwind distance is studied. The 

concentration of pollutant is calculated by using 

equation (26). The dimensionless parametric values 

used in the analysis   are taken as follows:  

α = 2, hs= 0.2, H = 1, 𝛽=10, Q=1,  𝜆 = 10, 𝜀 = 0.005. 

In order to illustrate the behavior of concentration 

profile, the dimensionless concentration when Q = 1 is 

displayed graphically for the variety of conditions as 

shown below: 

In figure (1), the concentration profile of non- buoyant 

pollutant is plotted against the vertical distance (0 

≤ 𝑧≤1) for different values of downwind distance ( 𝑥= 

0.3, 0.5, 0.7). The value of y is taken to be zero. It is 

observed that for a particular downwind distance (x = 

0.3), the concentration profile of non buoyant pollutant 

attains its peak at (z = 0.2). But with increasing 

downwind distance, the concentration profile decreases 

and approaches uniform distribution. As a 

consequence, the concentration profile of pollutants 

near the ground becomes high, which may prove 

dangerous. 

 

 
Fig 1: Dimensionless concentration C(x, 0, z) plotted 

against vertical height. 

 

In figure (2), the concentration profile is plotted against 

the downwind distance (0≤x≤1) for different values of 

vertical distance (z=0.2, 0.5, 0.8), keeping the value of 

cross-wind distance fixed at y=0. It is seen that for a 

particular downwind, i.e, x=0.2, the profile is very 

high, but on increasing the downwind distance, we 

observe that the concentration profile  of non- buoyant 

pollutants decreases regularly. 

 
Fig 2: Dimensionless concentration C(x, 0, z) plotted 

against downwind distance x. 
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In figure 3, the concentration profile is plotted with 

respect to downwind distance (0 ≤ x ≤ 1) for different 

values of cross-wind distance, i.e. (y = 0.2, 0.6, 0.9), 

keeping the value of vertical distance fixed on the 

value (z = 0.2). It is observed from the figure that 

concentration profile attains its peak at low distances, 

while for higher crosswind distances, the concentration 

profile decreases regularly. 

 
Fig 3: Dimensionless concentration C(x, y, 0.2) plotted 

against downwind distance x. 

 

In figure 4, the concentration profile is plotted against 

the vertical distance (0≤z≤1) with respect to different 

values (y = 0.2, 0.6, 1.0) for the constant value of the 

downwind distance, i.e., (x=0.2). It is seen that in the 

vertical direction, the concentration profile along the 

centerline of the plume reaches a point of maximum 

concentration, followed by extended spreading. It is 

also seen that the concentration level of non- buoyant 

pollutant decreases, and there is lateral spreading with 

increasing cross-wind distance (y≥1) from the source. 

 
Fig 4: Dimensionless concentration C (0.2, y, z) plotted 

against vertical height z. 

 

 

5. Conclusion 

In this study, a mathematical model for dispersion of 

non-buoyant air pollutants is constructed and is solved 

incorporating different parametric values with the wind 

velocity in the form of wave function that vary with 

down-wind distance.  The concentration profile of 

pollutants against the vertical and downwind distances 

for different parametric values is investigated. 
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