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ABSTRACT:  

Plastics have been indispensable to humans because of their widespread applications due to their favorable 

mechanical and physical properties. Hence, the increasing demand for their production, coupled with their 

non-biodegradability, has drawn public attention for their significant accumulation as wastes that could lead 

to environmental problems. Globally, this has encouraged to modify existing products considering the 

different aspects of their degradation. This article delves into various types of degradation in plastics, 

providing an exploration of these processes. Additionally, this article also details insights and strategies for 

controlling and preventing these types of degradation. 

 

INTRODUCTION  

Plastics are polymers characterized by their lengthy 

chain molecules [1]. They comprise carbon, hydrogen, 

oxygen, nitrogen, silicon, and chloride [2,3]. For a long 

time, they have played an essential role in our daily lives 

due to their various usability not only because of their 

mechanical and thermal characteristics but also to their 

stability and durability [4]. Over time, there has been 

significant enhancement in their stability and durability, 

showcasing increased resistance to various 

environmental factors [5]. 

For instance, synthetic plastics find extensive use in 

packaging applications due to their superior strength, 

lightweight nature, and resistance to water and 

waterborne microorganisms. Some of these plastics are 

polyethylene, polypropylene, polystyrene, polyvinyl 

chloride, polyurethane and polyethylene terephthalate 

(PET) [6].  

Although beneficial, synthetic or commercial plastics, in 

the long run, could pose drawbacks in degradation due to 

their mechanical and physical properties. Hence, the 

rising demand for their production and their non-

biodegradable nature have drawn public concern 

regarding the significant accumulation of wastes, 

potentially resulting in environmental pollution 

persisting for centuries [7]. This has also prompted 

global apprehension, driving efforts to encourage the 

modification of existing products to prioritize 

degradability. This has also spurred the development of 

new alternatives in alignment with the different 

mechanisms in degradation [8]. 

In this present review, the different types of degradation 

that could happen in plastics are discussed. These are 

namely, photo-oxidative, thermal, mechanochemical, 

catalytic, ozone-induced and biodegradation. Previous 

reviews primarily focused on factors and mechanisms of 

plastic degradation [9-18]. However, in this article, the 

prevention methods associated with various degradation 

types are also incorporated in details.    

TYPES OF DEGRADATION  

Degradation in polymers, such as plastics, is known as 

the alteration in the properties which occurs due to 

chemical, physical, or biological reactions, leading to 

bond breakages and subsequent chemical 

transformations [19]. Polymers undergo degradation at 

various stages throughout their life cycle, spanning from 

their initial processing, use, disposal into the 

environment, and recycling processes [20]. The 

degradation of polymers can be categorized based on the 

nature of the inducing agents, such as photo-oxidative, 

thermal, mechanochemical, catalytic, ozone-induced, 

and biodegradation [18, 21].  
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Photo-oxidative Degradation 

Photo-oxidation occurs through the combined effects of 

UV-light and oxygen, primarily contributing to the 

weathering of plastics [22]. Polymers may exhibit 

varying degrees of UV-light absorption, but they often 

contain impurities like hydroperoxide and carbonyl 

groups, introduced during their thermal processing stages 

[23]. These impurities can serve as photoinitiators [24] 

and are able to absorb UV-light above 290 nm [25]. As a 

result, they contribute to complex free radical chain 

reactions, enabling the combined processes of 

autooxidation and photodegradation [23]. 

Synthetic polymers used in outdoor applications 

commonly undergo this form of degradation. Typically, 

their longevity when exposed outdoors is dictated by the 

near-UV radiations (290-400nm) present in sunlight [26-

28]. 

Thermal Degradation 

Thermal degradation occurs at high temperatures and 

involves detrimental chemical alterations, even in the 

absence of oxygen [29-30]. When exposed to high 

temperatures without air, polymers initiate degradation. 

This differs from thermal oxidation, which typically 

occurs at lower elevated temperatures [31]. 

This type of degradation commences with chain scission, 

producing free radicals that participate in 

disproportionation and crosslinking reactions [32]. The 

reactions involved in degradation are influenced by 

various factors including heating rate, pressure, reaction 

medium, and reactor geometry. High viscosity is a 

significant factor that complicates the reaction by 

obstructing heat and mass transfer [33-34]. At 

temperatures exceeding 200°C, degradation progresses 

towards chain scission and is significantly influenced by 

impurities such as unsaturation sites, head-to-head units, 

and similar factors [35].  

Among the common polymers, polyvinyl chloride (PVC) 

stands out as one of the most thermally sensitive, 

typically undergoing degradation at temperatures 

starting around 250°C (480°F) and beyond [32]. Other 

polymers are known to degrade at elevated temperatures 

[36].  

Mechanochemical Degradation 

Mechanochemical degradation occurs when polymers 

undergo degradation due to mechanical stress and intense 

ultrasonic irradiation [37]. Here, molecular chains 

experience breakdown due to shear or mechanical force, 

often assisted by a chemical reaction [38].  

Under high stress, molecular chains can break into free 

radicals, which can participate in subsequent reactions. 

In the presence of oxygen, the initial reaction leads to the 

formation of peroxy radicals. These radicals stem from 

the cleavage of the main backbone segments of polymer 

chains within the stressed amorphous regions that 

connect crystallites [39]. 

At high-intensity ultrasound, this degradation process is 

also facilitated. The polymer undergoes very high 

vibrations, acting as mechanical forces. When ultrasonic 

waves pass through the solution, the localized shear 

gradient causes the tearing off of molecules, leading to 

chain scission and a reduction in molecular weight [40]. 

Catalytic Degradation 

The catalytic degradation of waste plastics into 

hydrocarbons that hold commercial value is highly 

advantageous. Polyolefins found in both industrial and 

domestic waste can be thermally or catalytically 

degraded into gases and oils. Adding catalysts enhances 

the quality of products obtained from the pyrolysis of 

plastic waste, reduces the decomposition temperature, 

and even allows for specific product selectivity [41]. 

In this form of degradation, when polymers are heated 

above 380°C, they undergo depolymerization and 

degradation through a free radical chain reaction [42]. In 

the case of propylene, the degradation mechanism 

involves a free radical process where Fe/activated carbon 

can be utilized as a catalyst [43]. Other catalysts 

employed in polymer degradation also include zirconium 

hydride [39], Pt-Co and Pt-Mo supported over SiO2 [44], 

zeolite and non-zeolite catalysts [45], transition metal 

catalysts such as Cr, Ni, Mo, Co and Fe on the support 

(Al2O3 , SiO2) [46], among others.  

 

Ozone-induced Degradation 

Ozone in the atmosphere can induce polymeric 

degradation. When oxidative processes are inactive, 

polymers can maintain their integrity for a longer 

duration [47]. Despite being present in small quantities 

in the atmosphere, ozone can significantly impact 

polymers. It degrades the polymers by generating 

reactive oxygen species (ROS) [48]. The formation of 
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reactive oxygen species (ROS) is linked to the reduction 

in the molecular weight of polymers and alterations in 

their electrical and mechanical properties [49]. 

Ozone degradation leads to the rapid and consistent 

production of carbonyl and unsaturated carbonyl 

products derived from aliphatic esters, ketones, and 

lactones. Additionally, it involves aromatic carbonyl 

products associated with the styrene phase. 

Subsequently, there is a more gradual formation of ether, 

hydroxyl, and terminal vinyl groups with time and 

concentration [50]. 

Furthermore, this degradation occurs within main chains 

containing C = C bonds, aromatic rings, or saturated 

hydrocarbon links. The process unfolds through unstable 

intermediates like the bipolar or peroxy radicals, which 

have the capacity to isomerize or degrade, consequently 

leading to the decomposition of macromolecules [51]. 

Biodegradation  

Biodegradation refers to any physical and chemical 

transformation induced by microorganisms. Plastics 

undergo degradation due to the influence of 

microorganisms, which include bacteria, actinomycetes, 

and fungi [52-53]. They undergo aerobic biodegradation 

in nature, anaerobic degradation in sediments and 

landfills, and a partly aerobic breakdown in compost and 

soil. In aerobic biodegradation, the primary products are 

carbon dioxide and water. Conversely, in anaerobic 

degradation, the byproducts consist of carbon dioxide, 

water, and methane [52]. 

Biodegradation is influenced by multiple factors, 

including polymer characteristics (such as mobility, 

tacticity, crystallinity, molecular weight, and types of 

functional groups and structural substituents), the 

specific organism involved, and the nature of any pre-

treatment undergone by the material [54-55]. 

In aerobic degradation or aerobic respiration, 

microorganisms utilize oxygen as an electron acceptor to 

break down large organic compounds into smaller 

compounds [56]. The by-products of this process are 

carbon dioxide and water, as illustrated in the reaction 

below [52, 56]: 

C plastic + O2 → CO2 + H2O + C residual +Biomass 

Anaerobic degradation is the process by which 

microorganisms break down compounds in the absence 

of oxygen. Instead of oxygen, certain microorganisms 

utilize alternative electron acceptors such as nitrate, 

sulfate, iron, manganese, and carbon dioxide to 

decompose organic chemicals into smaller compounds 

[57]. The by-products of the entire anaerobic degradation 

process include carbon dioxide, water, and methane, as 

represented in the reaction below [52, 57]: 

C plastic → CH4 + CO2 + H2O + C residual +Biomass  

Polymers, due to their large size and being water-soluble, 

are not directly transported into the cells of 

microorganisms through their cell walls. Instead, 

microorganisms use polymers as an energy source by 

secreting extracellular enzymes. These enzymes 

depolymerize the polymers outside the bacterial cells. 

Enzymes are central to the biodegradation process, 

operating either within the cell (intracellularly) or outside 

the cell (extracellularly). Depolymerization and 

mineralization are the two key processes involved in 

biodegradation [57]. 

PREVENTION OF DEGRADATION  

Polymer stabilizers are chemical substances that can be 

incorporated into polymeric materials, such as plastics, 

to hinder or delay degradation. These stabilizers are 

applied at various stages throughout the polymer life 

cycle to preserve the material's integrity [58]. Examples 

are antioxidants, light stabilizers, acid scavengers, metal 

deactivators, heat stabilizers, flame retardants, among 

others.  

Antioxidants  

Antioxidants function to impede the process of 

autoxidation in polymers, which involves their reaction 

with atmospheric oxygen [59]. Autoxidation refers to the 

process of oxidation that occurs at regular temperatures, 

involving reactions with oxygen without the aid of a 

flame or an electric spark [60]. Antioxidants can be 

primary, secondary or antiozonants.  

Primary Antioxidants   

Primary antioxidants function as radical scavengers, 

eliminating peroxy radicals, alkoxy radicals, hydroxyl 

radicals, and alkyl radicals. The oxidation process 

initiates with the creation of alkyl radicals, which form 

under high temperatures and high shear stress during 

processing. These alkyl radicals rapidly react with 

molecular oxygen, resulting in the generation of peroxy 

radicals [61]. 
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Secondary Antioxidants  

Secondary antioxidants work to eliminate organic 

hydroperoxides that are created due to the actions of 

primary antioxidants. While hydroperoxides are less 

reactive than radical species, they still have the potential 

to trigger new radical reactions [62]. Given their lower 

chemical reactivity, hydroperoxides necessitate a more 

reactive antioxidant. Among the commonly used classes 

of antioxidants for this purpose are phosphite esters, 

often derived from hindered phenols [63]. These 

antioxidants serve to transform polymer hydroperoxides 

into alcohols, undergoing oxidation themselves and 

being converted into organophosphates [64-65]. 

Antiozonants  

Antiozonants are substances that hinder or decelerate 

ozone-induced degradation. Ozone, naturally present in 

the air at very low concentrations, is highly reactive, 

especially towards unsaturated polymers leading to 

ozone cracking. Ozonolysis necessitates a distinct class 

of antioxidant stabilizers, which are typically based on p-

phenylenediamine. These antiozonants react with ozone 

more rapidly than ozone can react with vulnerable 

functional groups in the polymer, typically alkene 

groups. They achieve this by having a low ionization 

energy, which enables them to engage with ozone via 

electron transfer. This transformation results in the 

creation of radical cations that are stabilized through 

aromaticity. These species remain reactive and continue 

to react, yielding products such as 1,4-benzoquinone, 

phenylenediamine dimers, and aminoxyl radicals [66-

67]. 

Light Stabilizers  

Light stabilizers function to impede polymer photo-

oxidation, a process resulting from the interaction of light 

and oxygen. Similar to autoxidation, this constitutes a 

free radical process, where the antioxidants mentioned 

earlier are effective inhibiting agents. However, other 

classes of additives also prove beneficial, including UV 

absorbers, quenchers of excited states, and hindered 

amine light stabilizers (HALS) [68]. 

UV Absorbers  

The susceptibility of polymers to UV rays varies; 

materials like polycarbonates, polyesters, and 

polyurethanes are notably prone to UV degradation. UV 

stabilizers function by absorbing and dissipating the 

energy from UV rays as heat, typically through reversible 

intramolecular proton transfer. This process lessens the 

absorption of UV rays by the polymer matrix, thereby 

reducing the rate of weathering. Different types of UV 

stabilizers are utilized for various polymers: phenolic 

benzotriazoles and hydroxyphenyl-triazines are 

employed to stabilize polycarbonates and acrylics; 

oxanilides are used for polyamides and polyurethanes, 

while benzophenones are favored for PVC [69]. 

Quenchers  

Photo-oxidation can commence with the absorption of 

light by a chromophore present within the polymer, 

causing it to enter into an excited state. This can then 

interact with ambient oxygen, transforming it into highly 

reactive singlet oxygen. Quenchers have the capability to 

absorb energy from these excited molecules through a 

Förster mechanism and then dissipate it harmlessly as 

either heat or lower frequency fluorescent light. Singlet 

oxygen can be quenched by metal chelates, with nickel 

phenolates standing as a common example [70]. 

Hindered Amine Light Stabilizers (HALS)  

The efficacy of hindered aminelight stabilizers (HALS) 

in scavenging radicals generated by weathering can be 

elucidated through the Denisov Cycle, where aminoxyl 

radicals are formed. Aminoxyl radicals combine with 

free radicals within the polymers. HALS exhibit 

remarkable effectiveness in polyolefins like 

polyethylene and polyurethane. While recognized as 

light stabilizers, they are also capable of stabilizing 

thermal degradation [71]. 

Other Classes  

Polymers are vulnerable to degradation through various 

pathways beyond oxygen and light exposure. There have 

been reported preventive strategies in the literature to 

address the diverse types of degradation that may affect 

polymers. 

Acid Scavengers  

Acid scavengers play a critical role in neutralizing acidic 

impurities, especially those that release hydrochloric acid 

(HCl). PVC is particularly susceptible to acid-catalyzed 

degradation, often due to the release of HCl from the 

polymer itself. Halogenated flame retardants could also 

serve sources of acids along the process. Various acid 

scavengers are employed for this purpose, such as 

metallic soaps including calcium stearate and zinc 

stearate, mineral agents like hydrotalcite and 

hydrocalumite, as well as basic metal oxides including 

calcium oxide, zinc oxide, or magnesium oxide. These 
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scavengers work to counteract the acidic compounds, 

mitigating their adverse effects on the polymer material 

[72]. 

Metal Deactivators  

Metal ions, like those from titanium (Ti), aluminum (Al), 

and copper (Cu), can hasten degradation, particularly 

when polymers directly contact metal surfaces, as seen in 

wiring and cable applications. Additionally, metal 

catalysts employed during polymer formation might 

become enclosed within the material during production. 

This encapsulation often occurs with Ziegler-Natta 

catalysts used in polypropylene production. To enhance 

stability, metal deactivators are introduced. Deactivators 

function through chelation, forming inactive 

coordination complexes with the metal ions, thus 

preventing their deleterious effects on the polymer [73]. 

Heat Stabilizers  

Heat stabilizers are commonly applied to PVC since 

unstabilized PVC is highly susceptible to thermal 

degradation. These agents serve to minimize the loss of 

hydrochloric acid (HCl), a degradation process that 

initiates at temperatures above 70°C. Once 

dehydrochlorination begins, it becomes autocatalytic, 

accelerating the degradation. Various agents have 

historically been utilized, including derivatives of heavy 

metals like lead and cadmium. However, increasingly, 

metallic soaps are favored, species such as calcium 

stearate, due to their effectiveness as heat stabilizers [74]. 

Flame Retardants  

Flame retardants are diverse range of compounds utilized 

to enhance the fire resistance of polymers. Examples 

include brominated compounds, along with aluminum 

hydroxide, antimony trioxide, and various 

organophosphates, all of which contribute to reducing 

flammability in polymers [59, 75]. 

Biocides  

Biodegradation is a process driven by microorganisms 

and, as a result, necessitates the use of biocides. 

Isothiazolinones are compounds known for their 

antimicrobial properties and are used to manage bacteria, 

fungi, and algae. They serve as effective antifouling 

agents, inhibiting the unwanted accumulation of 

microorganisms on various surfaces [76-77]. 

CONCLUSION  

Plastics, regardless of their form, are susceptible to 

various types of degradation, including photo-oxidative, 

thermal, mechanochemical, catalytic, ozone-induced, 

and biodegradation. Various polymer stabilizers have 

been introduced to combat the degradation of plastic 

materials. These stabilizers play a crucial role in 

preserving the integrity and performance of plastic 

products. The ongoing increase in the demand for plastic 

production will drive more persistent efforts in the 

manufacturing process to develop more new innovations 

aimed at controlling and mitigating the effects of various 

degradation mechanisms. 
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