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ABSTRACT:  

Introduction: Radiation therapy is a critical component of cancer treatment. However, the delivery of 

radiation poses inherent challenges, particularly in minimizing radiation exposure to healthy organs 

surrounding the tumor site. One significant contributing factor to this challenge is the patient's 

respiration, which introduces uncertainties in the precise targeting of radiation. Managing these 

uncertainties during radiotherapy is essential to ensure effective tumor treatment while minimizing the 

adverse effects on healthy tissues. 

Objectives: This research addresses the crucial objective of achieving a balanced dose distribution during 

radiation therapy under conditions of respiration uncertainty. To tackle this issue, we begin by developing 

a motion uncertainty model employing probability density functions that characterize breathing motion 

patterns. This model forms the foundation for our efforts to optimize radiation dose delivery. 

Methods: In this article, we employ three bio-inspired optimization techniques: Cuckoo search 

optimization (CSO), flower pollination algorithm (FPA), and bat search Optimization (BSO). Our 

research evaluates the dose distribution in Gy on both the tumor and healthy organs by applying these 
bio-inspired optimization methods to identify the most effective approach. This research ultimately aids 

in refining the strategies used in radiation therapy planning under the challenging conditions posed by 

respiration uncertainty. 

Results: In this study, we investigated the use of three bio-inspired optimization techniques—CSO, FPA, 
and BSO—to overcome the issues of optimizing radiotherapy under the conditions of respiratory 

uncertainty. CSO and BSO were shown to be the most effective of the three bio-inspired approaches in 

terms of providing an adequate dosage to the tumor area. These methods were successful in confining the 

radiation dose to the tumor, which is essential for treating cancer. In particular, CSO proved to be the best 
method for radiation therapy planning when respiratory uncertainty was present. It not only provided the 

necessary dose to the tumor, but it also reduced radiation exposure to vital healthy organs like the lung 

and heart. 

Conclusions: Through the application of bio-inspired optimization techniques and a comprehensive 

evaluation of dose distribution, we seek to improve the precision and safety of radiation therapy, thereby 

advancing cancer treatment outcomes. 

 

1. Introduction 

Radiotherapy is a medical procedure that uses ionizing 

radiation sources such as protons, electrons, and high-

energy particles to slow the growth of malignant 

growths [1]. It is of the highest priority to successfully 

align ionizing radiation beams with the 3-D shape of the 

tumor while protecting adjacent healthy tissue [2, 3]. 

Yet, this task becomes progressively more complex 

when addressing tumors located in the thorax and 

abdominal areas due to the inherent motion of the tumor 

during the treatment process [4]. This motion is 

primarily induced by quasi-periodic breathing patterns 

and is particularly significant for thorax tumors like 
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those in the lungs and breast [5]. The constant motion of 

tumors during radiotherapy presents a significant 

problem because the tumor's exact position is not 

consistently known. Among the various sources of 

uncertainties, this review primarily focuses on the 

intrafractional respiratory motion, which results from 

the involuntary physiological process of respiration [6]. 

The organs located within the thoracic and upper 

abdominal regions, including the liver, lungs, prostate, 

pancreas, esophagus, breast, and kidneys, undergo 

motion as a result of breathing [7]. This movement 

brings about substantial uncertainties in various aspects, 

including imaging, treatment planning, and the 

administration of radiotherapy for thoracic and 

abdominal conditions. Incorporating margins is a 

common practice to address uncertainties in tumor 

localization during radiotherapy. Nevertheless, the use 

of these margins amplifies the potential for 

radiotherapy-associated toxicity, as it extends the reach 

of radiation to normal tissues within the Planned Target 

Volume (PTV). Most of these side effects are attributed 

to uncertainties in tumor localization caused by 

breathing-induced motion and setup errors. Radiation 

oncologists must carefully balance the clinical benefits 

of treatment with the risks to the patient's long-term 

quality of life when determining radiation dosage. This 

trade-off, due to uncertainties in tumor localization, can 

also hinder the effectiveness of radiotherapy by 

preventing the delivery of the necessary dose escalation 

for effective treatment. 

In this research, we take lung cancer treatment. Lung 

cancer continues to hold the unfortunate distinction of 

being the foremost cause of cancer-related fatalities, not 

only in the United States but also globally [8]. Its 

annual death toll nearly equals the combined mortality 

rates of prostate, breast, and colon cancer. A 2020 

report focusing on lung cancer emphasizes that it is the 

most commonly diagnosed cancer and the primary 

contributor to cancer-related deaths in Canada. 

Globally, cancer rates are projected to double by 2050, 

with lung cancer being the most prominent [9]. 

Radiotherapy is employed in the treatment of more than 

half of all cancer patients [10]. Specifically, we are 

directing our attention to external beam radiotherapy, a 

method that utilizes a linear accelerator affixed to a 

revolving gantry to administer high-energy photon 

beams to the patient. Photon beams deposit energy as 

they traverse tissue, affecting both tumor cells and the 

healthy tissue in their path. To minimize damage to 

healthy cells, radiation is delivered from various angles, 

allowing each beam to deliver a small dose to healthy 

tissue while concentrating a high dose in the 

overlapping region centred on the tumor. 

Our research aims to comprehend the impact of motion 

uncertainty on lung radiotherapy quality and establish a 

framework that generates solutions resistant to this 

uncertainty. We propose a bio-inspired optimization 

approach specifically tailored to address motion 

uncertainty and demonstrate its effectiveness. Our goal 

is to strike a balance between protecting healthy tissue 

and effectively treating the tumor, taking into account 

the presence of uncertainty. 

2. Literature Review 

The literature survey on optimizing radiotherapy under 

uncertainties presents a rich tapestry of research aimed 

at improving the precision and effectiveness of this 

crucial medical treatment. In the research [11], the 

primary objective is evident: to address the complexities 

introduced by intrafraction motion by employing 

feedback control of the radiation dose administered. 

This innovative technique combines pre-treatment 4-D 

computed tomography (4DCT) imaging with 

intrafraction respiratory-motion surrogates to estimate 

the total given dosage and the predicted motion 

trajectory throughout treatment in real-time. The 

optimization of intensity-modulated radiotherapy 

(IMRT) plans under free-breathing conditions is a 

significant advancement. Notably, this study 

demonstrates that the proposed stochastic control 

approach not only reduces irradiated tissue volume 

compared to traditional internal target volume (ITV) 

treatment but also significantly cuts down treatment 

time without compromising dosimetric quality. It 

represents a promising avenue to enhance the efficiency 

of radiotherapy, particularly in scenarios where 

respiratory gating may be impractical or less efficient. 

In the study [12], the focus transitions to the domain of 

4D multi-image-based (4DMIB) optimization, a field 

with the potential to bolster the resilience of scanned 

particle therapy in the presence of motion induced by 

respiration. The review underscores the pressing need 

for more comprehensive clinical evidence regarding the 

essentiality of 4DMIB optimization, particularly for 

conditions influenced by anatomical variations. Despite 

the wealth of research and technical insights in this 

domain, clinical investigations remain sparse, often 

constrained by methodological limitations such as 

limited patient cohorts and considerations related to 

motion dynamics. Nevertheless, the report 
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acknowledges that robust 3D optimized plans appear to 

conform well to clinical tolerances, rendering them 

suitable for treating mobile targets using scanned 

particle therapy. The clinical urgency for the adoption 

of 4DMIB optimization, however, is noted to be 

contingent upon more substantial empirical 

demonstration. 

In the study [13], the development of a risk-based 

robust approach is introduced, with a particular focus on 

addressing uncertainties related to tumor shrinkage 

during radiotherapy. The core objective of this 

suggested model is to reduce the variability of delivered 

doses, especially in worst-case scenarios, and minimize 

total radiation exposure to healthy tissues. The model 

leverages adaptive radiotherapy, a fractionation 

technique that considers the tumor's response to 

treatment over time and re-optimizes the treatment plan 

based on an estimate of tumor shrinkage. The clinical 

application of this approach is exemplified through a 

case study of lung cancer. The outcomes of this 

investigation highlight the potential benefits of the 

robust-adaptive model in terms of ensuring dose 

consistency within the tumor target while minimizing 

the impact on organs at risk. Furthermore, the model 

demonstrates superior performance in terms of 

maintaining uniform tumor dose distribution and overall 

plan reliability, underscoring its potential as a valuable 

resource in clinical radiotherapy. The research [14] 

delves into the realm of robustness analysis as a means 

to provide a more consistent framework applicable 

across various treatment techniques and modalities. 

This framework aims to address the uncertainties 

inherent in treatment planning and delivery, offering a 

standardized approach for evaluating and reporting 

plans. By identifying critical elements and dosimetric 

effects of uncertainties, robustness analysis seeks to 

enhance the reliability of plan evaluation, particularly in 

multi-institutional clinical trials. This approach holds 

the promise of promoting more accurate and consistent 

reporting of treatment outcomes, ultimately benefiting 

patients through more reliable radiotherapy. The 

research [15] presents an innovative concept of motion 

uncertainty, utilizing PDF to characterize motion caused 

by respiration. This concept is subsequently applied to 

construct a robust optimization framework for IMRT. 

Actual patient data is integrated into the analysis to 

assess the reliability of the generated solutions, using a 

clinical case of lung cancer as an illustrative example. 

The results are enlightening, showing that the robust 

solution effectively mitigates the under-dosing of the 

tumor compared to the nominal solution, particularly in 

worst-case scenarios. Furthermore, the robust approach 

showcases a significant decrease in the total dose 

administered to the primary organ at risk, specifically, 

the left lung. This observation underscores the capacity 

of this robust framework to enhance the optimization of 

radiotherapy by achieving an equilibrium between 

safeguarding healthy tissues and guaranteeing sufficient 

tumor dose delivery, a pivotal facet of radiotherapy 

planning. 

In the paper [16], the emphasis lies on assessing the 

dosimetric effectiveness of robust optimization within 

the realm of helical IMRT for localized prostate cancer. 

The study involves a comparison of two distinct 

planning strategies: robust optimization and the 

conventional approach utilizing a planning target 

volume PTV margin. The evaluation considers various 

factors, including setup uncertainty and anatomical 

changes, both of which significantly impact treatment 

outcomes. The results suggest that robust plans exhibit 

potential benefits, including higher target coverage and 

lower organ-at-risk (OAR) doses, especially when 

perturbed scenarios are considered. However, the study 

also highlights the complexity of assessing robustness, 

particularly in the presence of anatomical changes. The 

article [17] introduces a ground-breaking concept of 

incorporating time-dependent uncertainty sets into 

robust optimization. This advancement tackles a 

prevalent issue in medical decision-making, particularly 

in situations where a patient's condition may evolve 

throughout the treatment process. In IMRT, such 

changes in cell oxygenation can directly impact the 

body's response to radiation treatment. The proposed 

framework offers a versatile approach to adapt to 

evolving uncertainties by modelling temporal changes 

within a cone structure, yielding current uncertainty sets 

at each treatment stage. The conic robust two-stage 

linear problems presented in this study cover a range of 

radiotherapy scenarios, and the clinical application of 

this approach is demonstrated in a prostate cancer case. 

The time-dependent robust approach is proven to 

improve tumor control over the course of treatment 

without introducing additional risks compared to 

established clinical methods. Furthermore, the research 

offers valuable insights into the timing of observations, 

maximizing the informational value for intermediate 

diagnostics. This innovative approach has implications 

not only in clinical settings but also in various 

applications, including maintenance scheduling. 
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3. Methods 

(i) Model Uncertainty: 

The objective of the motion PDF technique is 

to establish an accurate dose distribution by convolving 

it with an approximated PDF, thus addressing the 

problem of motion producing dose 

dispersion throughout radiotherapy [18]. However, this 

method requires prior knowledge of the expected 

motion pattern during treatment. If the actual motion 

pattern differs significantly from the assumed one, 

convolving with an optimized dose distribution for a 

different PDF can result in an uneven dose distribution 

with healthy and affected regions. As a result, a strategy 

to reduce treatment-related PDF uncertainty is required. 

Our conceptual framework is built on a finite set 𝑋 that 

represents the various components of the respiratory 

cycle. A PDF of motion is a nonnegative real function 

𝑓: 𝑋 → 𝑅 that satisfies∑ 𝑓(𝑥) = 1𝑥∈𝑋 . We begin with a 

nominal PDF designated as p, which was obtained from 

data gathered over the planning phase. We postulate 

that the nominal PDF 𝑝 may differ from the real PDF �̃� 

inside a subset 𝑈 of the domain 𝑋 and that this 

deviation is likely to occur after treatment. 

This deviation follows an inequality condition.  

𝑝(𝑥) − 𝑝(𝑥) ≤ �̃�(𝑥) ≤ 𝑝(𝑥) + �̅�(𝑥)         ∀ 𝑥 ∈ 𝑈 [1] 

In this equation, the values of 𝑝 and 𝑝 are used 

to define the range within which the assumed and actual 

PDF should not deviate. To ensure simplicity, we 

assume that 𝑝 − 𝑝 ≥ 0 and  𝑝 + 𝑝 ≤ 1 when 

considering the disparities during treatment. 

𝑃𝑈 =

{
�̃� ∈ 𝑅|𝑋|: �̃�(𝑥) ∈ [𝑝(𝑥) − 𝑝(𝑥), 𝑝(𝑥) + 𝑝(𝑥)] ∀ 𝑥 ∈ 𝑈;

�̃�(𝑥) = 𝑝(𝑥)∀𝑥 ∈ 𝑋\𝑈; ∑ �̃�(𝑥) = 1𝑥∈𝑋

} 

[2] 

It's worth emphasizing that incorporating the 

set 𝑈 can be considered somewhat superfluous since its 

impact can be efficiently managed by configuring both 

𝑝(𝑥) = 𝑝(𝑥)  as equal to 0 for 𝑥 ∈ 𝑋\𝑈, excluding 

those that pertain to 𝑈. The upper and lower bounds 

on �̃�, which help define the range of uncertainty, will be 

referred to as "error bars". 

The robustness of a treatment plan can be 

evaluated by checking that all of the conditions in our 

formulation are met regardless of which pdf from the 

set 𝑃𝑈 is actualized. During the optimization process, 

the set 𝑃𝑈 comprises all pdfs that must be protected 

against. Simple linear "smoothness" requirements can 

be incorporated into the concept of 𝑃𝑈 to alleviate 

concerns about conservative techniques allowing for 

implausible and extremely oscillating PDFs. �̃�(𝑥) −

�̃�(𝑦)| ≤∈ if   |𝑥 − 𝑦| ≤ 𝛿, with suitable values for ∈ 

and 𝛿.  The primary challenge here is to ensure that 𝑃𝑈 

encompasses a wide enough range of PDF variations to 

account for realistic patient-specific breathing patterns 

while preventing an excessive margin that would 

sacrifice critical patient information. 

(ii) Optimization 

The optimization techniques employed in this 

research are detailed in this section with the 

pseudocode.  

Cuckoo Search Optimization 

The cuckoo bird's brood parasitic behaviour 

served as inspiration for the CSO technique, which was 

initially presented in a journal [19]. Cuckoos use this 

behaviour to ensure that their eggs hatch by host birds 

[20]. For optimization, researchers looked at this natural 

process and developed the CSO method. The 

terminology within the CSO algorithm is 

metaphorically associated with familiar concepts in 

general optimization [21]. When dealing with single-

objective function challenges, a "nest" or an "egg" 

represents an individual solution. An individual (nest) 

may contain many solutions (i.e., several eggs) in the 

arena of multi-objective function challenges. However, 

the primary focus of this research is on challenges with 

a single objective function. A nested set represents the 

entire population of possible solutions. The idea of a 

foreign bird departing a nest, representing the finding of 

a cuckoo's egg by a host bird, corresponds to the 

removal of an unsatisfactory solution. Conversely, the 

act of a cuckoo laying a new egg(s) in one or more nests 

represents the introduction of fresh solution(s) to the 

population. The CSO technique generates improved 

solutions using the following formula: 

𝑥𝑝
𝑡+1 = 𝑥𝑝

(𝑡)
+ ⨂ 𝐿�̇�𝑣𝑦(𝜆)   [3] 

Here, 𝑥𝑝
𝑡+1  represents a fresh solution for a 

cuckoo labelled as 𝑝 acquired during a new iteration 

denoted as 𝑡 + 1. This solution is derived from a prior 

solution, 𝑥𝑝
(𝑡)

, obtained in the preceding iteration 𝑡. To 

update these solutions, the Levy flight distribution 

algorithm called 𝐿�́�𝑣𝑦(𝜆)  is employed. Here, 𝜆 denotes 
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the Lévy walk parameter, while 𝛼 corresponds to the 

step size, which is determined by the scale of the 

particular issue being addressed. Furthermore, the 

symbol ⊗ represents element-wise multiplication. The 

Levy flight function approach allows for a stochastic 

walk with random step lengths derived from a Levy 

distribution. The Mantegna algorithm is typically used 

to estimate this distribution in the following manner: 

 𝐿�̇�𝑣𝑦(𝜆)~
𝑢

𝑣−𝜆    [4] 

Where: 

 

𝑢 ∼  𝑁(0, 𝜎𝑢
2 ) 

𝑣 ∼  𝑁(0, 𝜎𝑣
2 ) 

𝜎𝑢
2 =

Γ(1 + 𝜆) ∗ sin (
𝜋𝜆
2 )

Γ (
1 + 𝜆

2
) ∗ 𝜆 ∗ 2(

𝜆−1
2

)
 

𝜎𝑣
2 = 1 

 

With the Gamma function denoted as 𝛤. It's 

important to note that the parameter 𝜆 falls within the 

range 1 <  𝜆 ≤  3. The pseudo-code for CSO is given 

below. 

 

PSEUDOCODE FOR CSO 

Define an objective function 𝑓(𝑋), where 𝑋 represents 

the vector 𝑋 = (𝑓(𝑥1, 𝑥2, … . , 𝑥𝑑)𝑇. 

Initiate the population of host nests as 𝑋𝑖(𝑖 =

1,2, … . , 𝑛) 

While 𝑡 < 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: 

Pick a cuckoo at random using Levy flights. 

Assess its quality or fitness denoted as 𝐹𝑖 

Randomly pick one nest among the 𝑛 nests 

(example 𝑗). 

If 𝐹𝑖 > 𝐹𝑗, 

Replace 𝑗 with the new solution. 

End if 

Abandon a fraction (𝑝𝑎) of the less-fit nests 

and construct the new solution. 

Keep the best solutions. 

Determine the best solution by ranking them. 

Continue until the maximum number of 

iterations (𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) is reached. 

End While 

Flower Pollination Algorithm 
 

The characteristics of the pollination process, 

pollinator behaviour, and flower constancy can be 

distilled into a set of rules in order to better understand 

them [22]: 

1. Pollen-carrying insects engage in Lévy flights, 

allowing for the possibility of biotic and cross-

pollination to occur on a global scale. 

2. Conversely, self and abiotic pollination are 

examples of local pollination techniques. 

3. The possibility of reproduction between two 

flowers is related to how similar they are to one 

another, and this is what we mean by flower 

constancy. 

4. A switch probability, represented as 𝑝, ranging 

from 0 to 1 affects both local and global 

pollination probability. Local pollination assumes 

significance in overall pollination activities, 

influenced by factors like physical proximity and 

wind. The fraction 𝑝 signifies the contribution of 

local pollination to the entire pollination process. 

 

Flowers can produce billions of pollen 

gametes, and some plants can have dozens of flowers 

on a single plant. For the purpose of simplification, we 

presume that each plant has a single flower and that this 

flower produces just one gamete of pollen. So, we can 

think of a solution 𝑥𝑖 as a gamete of pollen or a flower. 

This simplification could be further developed in the 

future to account for situations with multiple pollen 

gametes or numerous flowers in multi-objective 

optimization challenges. Depending on these idealized 

features, we may create a flower-based algorithm called 

the FPA. The two main phases of this method are called 

global and local pollination, respectively [23]. 
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In the process of global pollination, insects and 

other long-distance travelers carry flower pollen from 

one location to another. Pollination and spread of the 

best ideas, represented by 𝑔∗, are therefore ensured. 

This process can be represented mathematically as 

follows, factoring in the first rule and flower constancy: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝐿(𝑥𝑖
𝑡 − 𝑔∗)   [5] 

In this equation, 𝑥𝑖
𝑡  represents solution vector 

𝑥𝑖 at 𝑡 iteration, and 𝐿 signifies pollination strength, 

serving as a step size. To mimic the variable step 

lengths observed in insects, a Lévy flight mechanism is 

employed efficiently. Then derive 𝐿 > 0 from a Lévy 

distribution with the form: 

𝐿~
𝜆Γ(𝜆)sin (

𝜋𝜆

2
)

𝜋

1

𝑆1+𝜆   , (𝑆 ≫ 𝑆0 > 0)  [6] 

Here, 𝛤(𝜆) represents the standard gamma 

function. Flower constancy and local pollination (Rule 

2) could be depicted as follows: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+∈ (𝑥𝑗
𝑡 − 𝑥𝑘

𝑡 )  [7] 

Flowers of identical species tend to remain 

consistent in appearance from one location to the next, 

and this depiction of pollen (𝑥𝑗
𝑡 and 𝑥𝑘

𝑡) does the same. 

Mathematically, a local random walk involves uniform 

distribution sampling within [0, 1] if 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  are from 

identical species or populations. Most pollination of 

flowers occurs on both the local and global levels. 

Flower patches situated nearby or flowers within 

relatively close proximity are more susceptible to 

undergo local pollination compared to those positioned 

farther away. To this end, we suggest a proximity 

probability, denoted by 𝑝, to toggle between local and 

global pollination (Rule 4) [24]. The pseudo-code for 

FPA is given below. 

PSEUDOCODE FOR FPA 

The objective is to minimize or maximize the function 

𝑓(𝑥),  where x represents a d-dimensional vector 𝑥 =

(𝑥1, 𝑥2, … . , 𝑥𝑑). Here are the steps of the algorithm: 

1. To begin, create a population of n pollen gametes or 

flowers, each of which will have a different random 

solution. 

2. Find the optimal solution, 𝑔∗, among these 

possibilities. 

3. Choose a switch probability 𝑝 between zero and 

one. 

4. Proceed with iterations as long as the number of 

iterations 𝑡 remains below the maximum allowable 

generations denoted as "MaxGeneration." For each 

of the 𝑛 flowers in the population: 

• If a randomly generated number falls below 𝑝, 

execute global pollination: 

• Create a d-dimensional step vector 𝐿 following 

a Lévy distribution. 

• Update the global position using the equation: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝐿(𝑔∗ − 𝑥𝑖
𝑡). 

• If the randomly generated number exceeds or 

equals "p," perform local pollination: 

• Generate a random value "∈" from a uniform 

distribution between [0, 1]. 

• Randomly select two solutions, 𝑗 and 𝑘 from 

the population. 

• Update the local position with the formula: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+∈ (𝑥𝑗
𝑡 − 𝑥𝑘

𝑡 ). 

• Evaluate the newly obtained solutions. 

• If these fresh solutions demonstrate superiority 

over their predecessors, substitute them and 

locate the current best solution, 𝑔∗ 

5. Continue this process until the achieved the 

maximum generation. 

 

Bat Search Optimization 
 

The bat algorithm is a bio-inspired technique 

rooted in echolocation, where bats employ sonar waves 

for navigation. It is a straightforward yet highly 

effective optimization method [25]. This approach 

draws inspiration from microbats' echolocation 

mechanisms, which these tiny creatures employ 

extensively to locate prey, identify obstacles in dark 

environments, and navigate through tight spaces, like 

stone cracks. The process of globally searching for a 

solution involves the position and velocity of virtual 

microbats undergoing random movements. Here, the 

position, referred to as 𝑥𝑖,  represents the current value 

of the solution, while the velocity, 𝑣𝑖, indicates the 

transition from the current solution to potentially better 

solutions. At each iteration, the best current solution is 

indicated by 𝑥∗. The exploration of solutions involves 

adjusting parameters like frequency (wavelength) 𝑓𝑖 , 

pulse emission rate 𝑟, and loudness Ai for each 

iteration. The effectiveness of this approach in locating 

global solutions depends on the precise management of 

frequency or wavelength to regulate the behavior of 

virtual microbats and achieve an optimal equilibrium 

between exploration and exploitation [26]. The 

mathematical equations governing the updates of 
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location and velocity for each microbat in the group are 

outlined below: 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽   [8] 

𝑉𝑖
𝑡 = 𝑉𝑖

𝑡−1 + (𝑋𝑖
𝑡−1 − 𝑋∗)𝑓𝑖   [9] 

𝑋𝑖
𝑡 = 𝑋𝑖

𝑡−1 + 𝑉𝑖
𝑡     [10] 

 

Here, 𝛽 belongs to the range [0, 1] and it 

indicates the random vector from uniform distribution. 

The parameter 𝑓𝑖 , signifying frequency (or wavelength), 

governs the rhythm and extent of the virtual bat's 

movement (both position and velocity) towards the 

local solution 𝑥∗ in each iteration and, ultimately, the 

best global solution once the objective is met. 

Additionally, the Bat Algorithm's efficiency is 

influenced by parameters like loudness and pulse 

emission rate. The mathematical expressions illustrating 

changes in sound value and pulse emission rate exhibit 

similarities, as illustrated below: 

𝐴𝑖
𝑡+1 = 𝛼𝐴𝑖

𝑡     [11] 

𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − exp(−𝛾𝑡)]   [12] 

Where 0 < 𝛼 < 1 𝑑𝑎𝑛 𝛾 > 0. 

 

The Bat Algorithm operates under three key 

assumptions: 

• All bats within the swarm employ echolocation 

for distance detection and the distinction 

between food and other objects. 

• Bats navigate through random flight patterns, 

tuning their frequency (or wavelength) and 

pulse emission rate (𝑟) of sonar signals to 

determine subsequent positions and velocities. 

While the loudness value 𝐴𝑖 can fluctuate, it 

must remain within the range spanning from a 

high positive value 𝐴0 to its minimum 

threshold, 𝐴𝑚𝑖𝑛. 

• To gain a clearer understanding of the Bat 

Algorithm, the optimization approach is 

summarized in the pseudo-code below.  

PSEUDOCODE FOR BSO 

Begin by initializing the bat population represented by 

𝑥𝑖 and 𝑣𝑖 (𝑖 = 1,2, … . , 𝑛) 

Set the initial values for frequencies 𝑓𝑖 , pulse rates 𝑟𝑖, 

and loudness 𝐴𝑖. 

While (𝑡 < 𝑚𝑎𝑥𝑣𝑎𝑙𝑢𝑒), Proceed with the following 

steps: 

Generate novel solutions by adjusting the frequency 

using the formula: 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽 

Update the velocities and locations/solutions as 

follows: 

𝑉𝑖
𝑡 = 𝑉𝑖

𝑡−1 + (𝑋𝑖
𝑡−1 − 𝑋∗)𝑓𝑖 

𝑋𝑖
𝑡 = 𝑋𝑖

𝑡−1 + 𝑉𝑖
𝑡 

If If (𝑟𝑎𝑛𝑑 > 𝑟𝑖) , then 

Choose one solution from the good solutions 

available. 

Produce a local solution in the vicinity of the 

selected good solution (𝑥∗) 

End if 

Produce a new solution through random flight. 

If (𝑟𝑎𝑛𝑑 < 𝐴𝑖  & 𝑓(𝑥𝑖) < 𝑓(𝑥∗), then 

Keep the new solutions. 

Enhance  𝑟𝑖  and decrease 𝐴𝑖. 

End If 

Rank the good solutions and identify the current 

good solutions 

End While 

4. Results 

In this section, we analyse the results and discussion of 

IMRT on a tumor located in the lower left lung, 

considering the effects of respiratory uncertainty. Three 

optimization techniques, namely CSO, FPA, and BSO, 

were employed to optimize the treatment plan. The 

primary goal of the research is to guarantee that the 

correct dose was delivered to the tumour while 

minimizing the dose to healthy tissues, particularly the 

lung, and heart, which are prone to radiation-induced 

damage because of breathing fluctuation. To limit dose 

fluctuations, a constraint was set up on keeping a dose 

range between 72 Gy and 80 Gy. 
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 In Figure 1, we see the Dose-Volume Histograms 

(DVH) for the tumor area after applying the three 

different optimization strategies. The red line indicates 

BSO, the blue line is FPA, and the black line is CSO 

outcome. Positive outcomes from all three optimization 

strategies suggest that the model effectively 

administered the prescribed radiation dose to the tumor 

while avoiding over- and under-dosing. Indicating that 

the three optimization strategies are adequate for 

guaranteeing the appropriate tumor dosage. 

 
Fig. 1. DVH on tumor 

 

Figure 2 depicts the DVH assessment for the lung area 

containing the tumor. The blue plot represents the dose 

distribution by BSO, the yellow plot represents FPA, 

and the red plot represents CSO. When the results of the 

three procedures are compared, it is clear that CSO 

delivered a minimal dosage to the lung. This finding 

suggests that CSO is the most successful approach for 

limiting radiation exposure to healthy lung tissue, hence 

reducing possible radiation-induced damage. 

 

 
Fig. 2. DVH on Lung  

 

Radiation can also affect the heart, hence Figure 3 

displays the DVH analysis for that area as well. The 

dose delivered by the BSO is represented by the violet 

plot, FPA by the orange plot, and CSO by the blue plot. 

Similar to the lung region, CSO delivered the minimum 

radiation dose to the heart when compared to the other 

two optimization techniques. This result underscores the 

effectiveness of CSO in safeguarding the heart from 

excessive radiation exposure. 

 
Fig. 3. DVH on Heart  

Table 1 presents the doses delivered in Gy by the three 

optimization techniques to both the tumor and healthy 

organs. BSO and CSO delivered doses of 71 Gy and 

70.32 Gy to the tumor, which are slightly lower than the 

minimum dose constraint of 72 Gy but within an 

acceptable range. However, FPA delivered a lower dose 

of 67.2 Gy to the tumor, indicating a deviation from the 

desired dose. CSO established its superiority in terms of 

healthy organs by delivering the least dosages of 29.4 

Gy and 7.98 Gy to the lungs and heart. FPA supplied 

the second lowest dosage. 

 

Table 1. Dose delivered to the tumor and other organs 

Optimization 

Method 

CSO FPA BSO 

Tumor 70.32 67.2 71 

Lung 29.4 30.554 35.924 

Heart 7.98 10.25 12.57 

 

In conclusion, the results show that CSO is the best 

optimization strategy for IMRT in the circumstance of 

respiratory uncertainty. It efficiently delivers a 

sufficient dose to the tumor while minimizing radiation 

exposure to critical organs, particularly the lungs, and 

heart. 

5. Conclusion 

In this study, we investigated the use of three bio-

inspired optimization techniques—CSO, FPA, and 
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BSO—to overcome the issues of optimizing 

radiotherapy under the conditions of respiratory 

uncertainty. Our main goal was to obtain a balanced 

dose distribution, assuring that the tumor received a 

sufficient amount of radiation while minimizing the 

dose given to healthy organs. Several significant 

inferences can be drawn from the results of this research 

and analysis. CSO and BSO were shown to be the most 

effective of the three bio-inspired approaches in terms 

of providing an adequate dosage to the tumor area. 

These methods were successful in confining the 

radiation dose to the tumor, which is essential for 

treating cancer. In particular, CSO proved to be the best 

method for radiation therapy planning when respiratory 

uncertainty was present. It not only provided the 

necessary dose to the tumor, but it also reduced 

radiation exposure to vital healthy organs like the lung 

and heart. This function is crucial in protecting 

surrounding tissues from damage caused by radiation. 

As we conclude this study, it is worth noting that while 

we focused on addressing respiration uncertainty, other 

sources of uncertainty in radiation therapy planning 

may exist. In future research, it is imperative to identify 

and tackle these additional uncertainties using bio-

inspired or hybrid algorithms. By broadening the scope 

of optimization techniques and considering various 

uncertainties, we can further refine radiation therapy 

planning and enhance its precision and safety. 
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