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ABSTRACT: 

Recent biomedical research has highlighted the promising potential of integrating plant-

derived nanoparticles (NPs) as molecular biomarkers in both cancer staging and therapy. This 

comprehensive review aims to delve into the multifaceted landscape encompassing the use of 

these NPs in cancer diagnostics and treatment modalities. In the domain of cancer diagnostics, 

the distinctive physicochemical properties of plant-derived NPs make them highly effective 

in detecting and staging various cancer types. Their specificity and sensitivity enable precise 

identification of cancerous cells, revolutionizing early detection and enabling timely 

interventions. Plant-derived NPs extend their utility to cancer therapy by serving as carriers 

for therapeutic agents, facilitating targeted delivery to specific tumor sites while minimizing 

systemic toxicity. Their biocompatibility and potential for controlled drug release hold 

significant promise in enhancing treatment efficacy and patient outcomes. However, amidst 

these remarkable advancements in cancer research, it is crucial to critically assess the 

environmental implications associated with the widespread use of plant-derived NPs in 

healthcare settings. Concerns about their fate, behavior post-administration, and potential 

impact on ecosystems necessitate thorough investigation, particularly regarding 

bioaccumulation, persistence, and subsequent environmental effects. This review also 

addresses regulatory and ethical considerations intertwined with the utilization of plant-

derived NPs in cancer care. The need for stringent regulatory frameworks and ethical 

guidelines becomes apparent to ensure the safe and responsible use of these innovative tools 

while mitigating potential environmental risks. 

 

 

Introduction 

Cancer diagnosis and treatment stand at a pivotal stage, 

propelled by the transformative potential of molecular 

biomarkers[1]. Among these advancements, the 

integration of plant-derived nanoparticles (PDNPs) as 

molecular biomarkers in cancer staging and therapy 

marks a groundbreaking trajectory. This innovative 

paradigm shift promises unparalleled precision and 

efficacy in diagnosing and treating cancer[2]. However, 

as the scientific community embraces this evolution, a 

crucial facet demands profound exploration: the 

consequential environmental implications of these 

PDNP-based technologies[3]. The burgeoning reliance 

on PDNPs raises critical questions about their ecological 

footprint throughout their lifecycle – from synthesis and 

application to eventual disposal[5]. Understanding the 

intricate environmental impact of these nanosystems 

becomes paramount as we navigate the delicate balance 

between medical innovation and environmental 

stewardship[6]. This comprehensive review endeavors to 

http://www.jchr.org/


 
 

 

521 

Journal of Chemical Health Risks 

www.jchr.org 

JCHR (2023) 13(6), 520-529 | ISSN:2251-6727 

navigate this nuanced terrain, delving into the 

multifaceted dimensions of PDNP-based molecular 

biomarkers in cancer care, aiming to unravel their 

ecological footprint, evaluate potential risks, and propose 

strategies to harmonize their biomedical benefits with 

environmental sustainability[7]. 

 

PDNPs for Cancer Biomarkers 

Plant-Derived Nanoparticles (PDNPs) have emerged as a 

promising avenue in the development of cancer 

biomarkers, offering several advantages over traditional 

approaches. These advantages not only enhance the 

accuracy and efficacy of cancer diagnostics but also pave 

the way for innovative therapeutic interventions[8]. 

 

Advantages Over Traditional Biomarker Approaches 

Specificity and Sensitivity in Early Cancer Detection: 

PDNPs exhibit an exceptional capacity for precise and 

sensitive cancer detection, marking a significant 

advancement over conventional biomarker 

approaches[9,10]. Their unique physicochemical 

properties enable them to detect minute alterations in 

biomolecular profiles associated with cancer cells, 

allowing for early-stage detection[11]. This heightened 

sensitivity ensures that even subtle changes indicative of 

cancer initiation or progression are identified, 

empowering clinicians to intervene at earlier, more 

treatable stages[12]. 

 

Multifunctionality for Theranostics (Diagnosis and 

Therapy): A distinguishing feature of PDNPs lies in their 

multifunctionality, enabling both diagnosis and therapy 

within a single platform—an approach known as 

theranostics[13]. These nanoparticles can encapsulate 

therapeutic agents while concurrently serving as imaging 

contrast agents. This dual capability enables targeted 

delivery of therapeutics to specific cancer sites while 

visualizing the tumor, optimizing treatment efficacy, and 

minimizing off-target effects[14]. 

 

Biocompatibility and Degradability: PDNPs possess 

inherent biocompatibility and degradability owing to 

their natural origin, ensuring compatibility with 

biological systems and minimal toxicity concerns[15]. 

Their composition allows for gradual degradation and 

clearance from the body, reducing the risk of long-term 

adverse effects often associated with synthetic 

nanoparticles. This characteristic enhances their safety 

profile, making them a more viable option for clinical 

applications[16,17]. 

 

Types of PDNPs Used for Cancer Biomarkers 

Polysaccharides, Proteins, Lipids, and Combinations: 

PDNPs encompass a diverse array of materials derived 

from various plant sources, including polysaccharides, 

proteins, lipids, and their combinations[18]. Each 

material offers distinct properties that can be tailored to 

specific applications in cancer biomarker 

development[19]. For instance, polysaccharide-based 

PDNPs might provide excellent biocompatibility, while 

protein-derived nanoparticles could offer enhanced 

stability or targeting capabilities. Combinations of these 

materials further widen the spectrum of potential 

functionalities and applications in cancer diagnostics and 

therapy[20]. PDNPs have shown remarkable promise in 

the development of specific biomarkers tailored for 

various types of cancers, demonstrating their versatility 

and potential clinical applicability[21]. For instance, in 

prostate cancer, PDNPs derived from plant proteins have 

been engineered to target prostate-specific membrane 

antigen (PSMA), enabling highly specific imaging and 

therapy delivery to prostate cancer cells while 

minimizing collateral damage to healthy tissue[22]. In 

breast cancer, polysaccharide-based PDNPs 

functionalized with specific antibodies have exhibited an 

exceptional ability to recognize and bind to surface 

receptors overexpressed in breast cancer cells[23]. This 

targeted binding facilitates both early detection through 

imaging modalities and precise drug delivery for 

therapeutic interventions. Furthermore, in lung cancer, 

lipid-based PDNPs have been developed to encapsulate 

chemotherapeutic agents, enhancing their delivery 

specifically to lung tumor sites[24,25]. This approach not 

only improves the therapeutic efficacy but also 

minimizes systemic side effects associated with 

conventional chemotherapy[26]. 
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Figure 1. Biomarkers within the Cancer 

 

Environmental Implications of PDNP Production and 

Use 

Plant Cultivation and Harvesting: The advent of plant-

derived nanoparticles (PDNPs) has surged as a beacon of 

hope in medical science, particularly in cancer staging 

and therapy[27]. However, the burgeoning demand for 

these nanoparticles poses a significant challenge in terms 

of their environmental footprint, starting right from the 

cultivation and harvesting of the source plants[28]. The 

escalating demand for specific plant species, rich sources 

of nanoparticles, often results in intensive cultivation 

methods[29]. This leads to the employment of 

unsustainable agricultural practices, such as monoculture 

farming, where vast tracts of land are devoted solely to 

these plants[30]. Monoculture not only depletes soil 

nutrients rapidly but also heightens susceptibility to 

diseases and pests, necessitating increased pesticide and 

fertilizer use. Such practices, while meeting the PDNP 

demand, contribute significantly to environmental 

degradation[31]. The excessive use of fertilizers and 

pesticides in cultivating plants for PDNP extraction poses 

a severe threat to the environment. Soil depletion, caused 

by the overuse of land for specific plant sources, leads to 

diminished fertility and erosion[32]. Additionally, runoff 

from these agrochemicals seeps into water bodies, 

polluting them and disrupting aquatic ecosystems[33]. 

Furthermore, the extensive monoculture farming 

practices result in biodiversity loss, as diverse 

ecosystems are replaced by single-species plantations, 

disrupting the natural balance and endangering various 

species[34]. 

 

Nanoparticle Synthesis and Processing: The production 

of PDNPs involves intricate processes of nanoparticle 

synthesis and subsequent processing, which bring forth 

their own set of environmental challenges[35]. 
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Nanoparticle synthesis requires energy-intensive 

procedures, often relying on conventional methods that 

consume significant amounts of energy. Moreover, many 

of these processes involve the use of chemicals that may 

have adverse effects on the environment[36,37]. The 

reliance on these chemicals raises concerns regarding 

their ecological impact, especially during manufacturing 

and synthesis stages. The manufacturing and processing 

of PDNPs generate considerable waste[38]. From 

leftover materials and by-products to chemical residues, 

the waste produced in these processes poses a risk of 

environmental contamination if not managed and 

disposed of properly[39]. Improper disposal methods 

could lead to pollution of soil, water bodies, and even the 

air, perpetuating environmental hazards[40]. 

 

Disposal and End-of-Life Management: Once utilized 

in medical applications, the fate of PDNPs after their 

intended use becomes a significant concern. The absence 

of standardized protocols for the disposal or recycling of 

PDNPs adds to the environmental quandary[41]. With 

their unique properties, PDNPs require specific handling 

and disposal techniques that are yet to be well-defined, 

potentially leading to their improper disposal, further 

aggravating environmental risks[42]. The possibility of 

PDNP residues accumulating in ecosystems and food 

chains post-use raises alarming ecological concerns[43]. 

The long-term effects of nanoparticle accumulation on 

flora, fauna, and ultimately human health remain largely 

unknown, necessitating rigorous research and 

responsible waste management practices[44]. 

 

Table 1: Types of Plant-Derived Nanoparticles (PDNPs) Used in Cancer Biomarkers 

 

PDNP Type Composition Application in Cancer Biomarkers Reference 

Polysaccharides Derived from plant 

polysaccharides 

Early detection and targeted therapy for specific 

cancer types 

[45] 

Proteins Extracted from plant-based 

sources 

Biomarkers for monitoring treatment responses 

and disease progression 

[46] 

Lipids Obtained from plant lipids Nanocarriers for drug delivery and imaging in 

cancer diagnostics 

[47] 

Combinations Mixtures of plant-derived 

elements 

Enhanced specificity in identifying multiple 

cancer biomarkers 

[48] 

Polysaccharides Derived from specific plant 

sources 

Targeted imaging and therapy in certain cancer 

microenvironments 

[49] 

Proteins Isolated proteins with targeted 

properties 

Development of personalized treatment 

approaches 

[50] 

Lipids Lipid-based nanoparticles Delivery of therapeutics to cancer cells and tissues [51] 

Combinations Mixtures of plant-derived 

materials 

Study of interactions between nanoparticles and 

cancer cells 

[52] 

Polysaccharides Natural polymer-based 

nanoparticles 

Evaluating biocompatibility and toxicity profiles [53] 

Proteins Engineered plant protein-based 

nanocarriers 

Targeted drug delivery mechanisms and 

therapeutic efficacy 

[54] 

 

Mitigating Environmental Risks: Towards 

Sustainable PDNPs 

The integration of sustainable practices in the production 

and utilization of Plant-Derived Nanoparticles (PDNPs) 

is imperative to mitigate potential environmental 

repercussions. This section delineates various strategies 

to address these concerns[55]. 

 

Green Synthesis Methods for PDNP Production: The 

pursuit of eco-friendly approaches in PDNP production 

involves leveraging plant extracts, enzymes, and 

microbial processes[56]. These methods harness the 

inherent capabilities of natural components, fostering a 

reduction in the ecological footprint associated with 
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conventional nanoparticle synthesis[57]. Utilizing plant 

extracts, particularly phytochemicals and biomolecules, 

offers a sustainable pathway[58]. These extracts, rich in 

phytoconstituents like polyphenols or flavonoids, serve 

as reducing and stabilizing agents in nanoparticle 

synthesis[59]. Enzymatic routes, employing enzymes 

derived from plant sources or microorganisms, facilitate 

precise control over nanoparticle characteristics. This 

green synthesis paradigm champions not only reduced 

environmental impact but also engenders PDNPs with 

inherent biocompatibility and diminished 

toxicity[60,61]. 

 

Sustainable Agricultural Practices: Implementing 

organic farming methods and embracing water 

conservation techniques play pivotal roles in fostering 

sustainable PDNP production. Organic farming 

circumvents the detrimental effects of agrochemicals, 

promoting soil health and biodiversity[62]. This shift 

minimizes the environmental strain stemming from 

extensive fertilizer and pesticide usage often associated 

with conventional agricultural practices[63]. Moreover, 

integrating water conservation strategies within 

cultivation processes lessens water consumption, thereby 

mitigating the strain on local water resources. Employing 

drip irrigation systems, rainwater harvesting, or adopting 

drought-resistant crop varieties contributes significantly 

to sustainable PDNP sourcing[64]. 

 

Life Cycle Assessment of PDNP Production and Use: A 

comprehensive life cycle assessment (LCA) is 

imperative to comprehend the complete environmental 

footprint of PDNP production and application[65]. This 

assessment spans from the extraction of raw materials to 

PDNP synthesis, utilization, and eventual disposal. It 

encompasses energy consumption, carbon emissions, 

resource utilization, and waste generation at each 

stage[66]. Analyzing the environmental impact 

throughout the lifecycle facilitates informed decision-

making. LCA findings aid in identifying hotspots where 

interventions are most effective. This holistic evaluation 

paves the way for the development of strategies to 

minimize adverse environmental consequences 

associated with PDNP utilization[67,68]. 

 

Development of Biodegradable and Non-Toxic PDNPs: 

Research endeavors focus on engineering PDNPs that are 

inherently biodegradable and possess minimal 

toxicity[69]. Exploration into novel materials and 

synthesis methodologies aims to curtail environmental 

persistence and adverse effects on ecosystems. By 

designing PDNPs with innate biodegradability, the risk 

of long-term environmental accumulation 

diminishes[70]. Simultaneously, efforts to ensure their 

non-toxic nature are crucial to prevent ecological 

disruptions. This approach aligns with the principles of 

green nanotechnology, advocating for safer and 

sustainable nanosystems[71]. 

 

Conclusion and Future Perspectives 

As we undertaking deeper into leveraging the capabilities 

of plant-derived nanoparticles (PDNPs) within the realm 

of cancer staging and therapy, it becomes increasingly 

vital to navigate a nuanced equilibrium between their 

biomedical advantages and the potential environmental 

repercussions they entail[72]. While PDNPs present 

enticing prospects for precise cancer diagnosis and 

targeted therapeutic interventions, the process of their 

production and utilization necessitates a vigilant 

evaluation of their ecological implications[73]. This 

underscores the pivotal need for collaborative efforts 

encompassing a diverse spectrum of stakeholders to 

address the ecological consequences associated with 

PDNP-based technologies. Scientists, engineers, 

policymakers, and healthcare professionals must unite in 

a concerted endeavor to guide PDNP research and 

application towards sustainability[74]. Only through 

collective action and a shared commitment to 

responsibility can we pave the way for the conscientious 

integration of PDNPs in healthcare while safeguarding 

our environment. Moreover, advancing towards 

sustainable PDNP technologies requires an ongoing 

dedication to research and innovation. The pursuit of 

reducing the environmental footprint attributed to 

PDNPs mandates continuous exploration into 

environmentally friendly synthesis methodologies, 

stringent assessments of their life cycles, and the 

exploration and development of biodegradable, non-

toxic alternatives[75]. Investing in comprehensive 

studies and establishing robust frameworks will not only 

enable us to capitalize on the full potential of PDNPs in 

revolutionizing cancer diagnosis and treatment but also 

ensure their minimized impact on our fragile ecosystems. 

This emphasizes the critical importance of simultaneous 

advancement in biomedical applications and 

environmental consciousness, steering the trajectory of 
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PDNP utilization towards a sustainable and responsible 

future in healthcare[76,77]. 
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