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Abstract 

Diabetes is a serious obstacle to the eye health of people all over the world. When it 

comes to performing tests for diabetic retinopathy (DR) in these individuals, there 

is a substantial problem that develops as a result of variables such as the rising 

prevalence of diabetes and the overall trend toward an older population.  Utilizing 

artificial intelligence (AI) in the realm of healthcare is an innovative domain that 

holds promise in enhancing population screening and potentially aiding physicians 

in reaching accurate diagnoses. Through the construction of intricate neural 

networks, which are formed by interconnecting neurons based on the provided data, 

and subsequently evaluating these connections against predetermined benchmarks, 

the field of computational biology exhibits the ability to discern patterns. That's a 

huge advance, definitely. The severity of diabetic retinopathy is a growing problem. 

If retinopathy, a disorder that might threaten eyesight, is caught and treated early 

on, it may pose less of a threat. Screening for this ailment may be time-consuming 

and labour-intensive, so any instrument that can speed up the procedure and reduce 

the need for specialist labour would be much appreciated by both patients and 

ophthalmologists. This article offers an up-to-date status report on the utilisation of 

AI to the treatment of diabetic retinopathy as well as a few other common retinal 

illnesses. 
 

Introduction 

The disease known as diabetes mellitus is characterized 

by abnormally high amounts of glucose in the blood 

that has the potential to harm the lens of the eye, which 

is located in the centre of the posterior portion of the 

optic nerve. This condition is known as diabetic 

retinopathy. A disease known as diabetic retinopathy 

may develop when diabetes is present, which causes 

damage to the microvascular end-organs in the body 

and can lead to vision loss. In 1856, Eduard Jaeger 

made the pioneering discovery of identifying 

alterations in the macula caused by diabetes. These 

alterations manifested as yellow patches and 

extravasations that permeated either a portion or the 

entirety of the retinal layers. Jaeger ascribed his finding 

to the presence of diabetes. This achievement was 

made possible due to the advent of the recently 

developed direct ophthalmoscope, which was initially 

documented in the year 1855. During that period, 

Albrecht von Graefe explicitly stated that no 

observable indication of a correlation between diabetes 

and retinal issues could be discerned, despite the fact 

that Jaeger's findings were generating excitement 

within the scientific community. In 1872, Edward 

Nettleship made a significant contribution to the field 

of biology by publishing his influential paper titled 

"On oedema or cystic disease of the retina." This 

groundbreaking study presented the initial 

histopathological evidence of "cystoid degeneration of 

the macula" in individuals affected by diabetes. In the 

year 1876, Wilhelm Manz presented an account of the 

proliferative alterations occurring in diabetic 

retinopathy. He also elaborated on the importance of 

tractional detachments of the retina and ocular 

haemorrhages from a biological perspective. 

There has been a considerable increase in the 

percentage of individuals living with diabetes from the 

time when records began till the present day. This trend 

has continued from the beginning of recorded history. 

This growth has been estimated that these have 
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occurred in a variety of nations and time periods 

(Ogurtsova et al., 2017). This constant development 

will be further emphasised in the coming days as a 

result of the culinary practises that are prevalent in our 

society today, as well as the lifestyle. In contrast to 

affluent countries, such as the United States, which 

have witnessed a decrease in the number of diabetic 

citizens in recent years, developing countries such as 

India have experienced a significant rise in the 

percentage of their populations diagnosed with 

diabetes (Shaw et al., 2010). Although there were 

various studies that included the knowledge that 

fibronectins performed an earlier function in adhesion 

and stability, the localization of fibronectin in the 

epiretinal membrane was not recognised until the year 

1991 (Immonen et al., 1991). A person's increased risk 

of getting diabetic retinopathy is shown to have a 

positive correlation with their increased age and the 

length of time they have had diabetes, in addition to 

inadequate management of blood sugar levels and 

inconsistent blood pressure readings (Wang et al., 

2022). Based on the understanding of the disease's 

intensity and occurrence, it was projected that by the 

year 2035, the worldwide population of individuals 

affected by diabetic retinopathy would reach 

approximately 592 million. Within the population 

affected by diabetes, over 25% of individuals exhibit 

diabetic retinopathy (Wilkinson and Miller 2008).  

 

  

  
Normal vision Vision with diabetic retinopathy 

 

Deciphering the process results in understanding their 

interaction with the surrounding environment is crucial 

for comprehending the advancement of the initial 

phases of diabetic retinopathy. In the visual organs of 

humans and certain other organisms, two 

interconnected networks of blood vessels form: The 

choroid is responsible for supplying 90 percent of the 

entire flow of blood to the retina which is located at the 

back of the eye. and the vasculature within the retina, 

which is further divided into superficial and deep 

networks. These networks supply the innermost portion 

of the retina, while specifically excluding the macula. 

It is worth noting that the presence of a macula is 

unique to humans and a select few primate species. 

(Stone et al., 1995, Kur et al., 2012).   

 

Classification 

Non-proliferative diabetic retinopathy (NPDR), which 

was traditionally referred to as simple or background 

retinopathy, and proliferative diabetic retinopathy 

(PDR) are the two primary categories that are used to 

classify diabetic retinopathy. 

 

Non-proliferative diabetic retinopathy, also known as 

NPDR, is the initial phase of diabetic retinopathy 

(DR), which is characterized by a greater permeability 

and blockage of capillaries in the blood arteries of the 

retina.  In this period, retinal abnormalities such as 

microaneurysms, hemorrhages, and thickened 

discharges may be noticed in the corneal pictures, even 

if the people do not exhibit any symptoms. This is 

because the disease has not yet reached the advanced 

stage. 

Proliferative diabetic retinopathy (PDR), a progressed 

phase of diabetic retinopathy (DR), is characterized by 

the emergence of novel blood vessels 

(neovascularization). During this stage, people may 

have significant vision impairment as a result of 

bleeding into the vitreous humor (also known as 

vitreous hemorrhage) from newly produced aberrant 

blood vessels or the onset of tractional retinal 

detachment. Both of these issues may be caused by 

abnormal blood vessels. 

 

 



 

518  

  
  

Journal of Chemical Health Risks           

www.jchr.org   

JCHR (2023) 13(5), 516-529 | ISSN:2251-6727       

  
Normal retina Retina with Diabetic Retinopathy 

Fig: Photographs displaying a healthy retina and a retina afflicted by diabetic retinopathy 

Diabetic macular edoema (DME)  

Diabetic macular edoema is the prevailing factor 

leading to vision impairment in individuals with 

diabetic retinopathy (DR). DME demonstrates the 

occurrence of macular edema or hypertrophy resulting 

from the buildup of fluid in the macula, situated both 

below and within the retina. The breakdown of the 

barrier that separates blood from retinal tissue (BRB) is 

what starts the accumulation of fluid in the retina in the 

first place. 

 

Hyperglycemia 

Damage to the retinal microvascular network can be 

caused by diabetes through a number of different paths. 

One of these ways that the blood vessels in the retina 

were damaged was due to hyperglycaemia (Brownlee 

2005). The rising of glucose level is also connected 

with the loss of pericytes, which is associated with the 

impairment of vascular integrity (Romeo et al., 2002).  

The disruption of the blood retinal barrier, the 

reduction in pericyte population, the increase in 

thickness of the basement membrane, the formation of 

microaneurysms, the emergence of neovascularization, 

and these are the fundamental characteristics of 

diabetic retinopathy (Fong et al., 2003). 

 

Pericyte loss  

Pericytes, which are specialised contractile 

mesenchymal cells derived from the mesoderm, has a 

essential part of evolutionary process of diabetic 

retinopathy. Within the capillaries, these pericytes 

perform duties that are analogous to those of the 

smooth cells of muscle, which are present inside the 

bigger blood vessels. Specifically, they are responsible 

for regulating vascular tone and perfusion pressure. 

(Beltramo et al., 2013). The depletion of pericytes, 

accompanied by vascular cell deterioration and 

hardening of the basement membrane, leads to the 

subsequent development of acellular capillaries. These 

capillaries are tubular structures lined by the basement 

membrane, lacking both endothelial cells and 

pericytes. Observations revealed that following an 

extended duration of diabetes, the experimental rats 

exhibited a decline in pericyte population. This decline 

can be attributed to the migration of pericytes induced 

by hyperglycaemia (Pfister et al., 2008). Another 

experiment demonstrated that the absence of pericytes 

did not have any effect on the functioning of arteries or 

veins, and there was no indication of the presence of 

microaneurysms (Hammes et al., 2002).  

 

Vascular basement membrane (BM) thickening  

Between the pericytes and the endothelium of blood 

arteries is a thin, electron-dense membrane known as 

basement membrane (BM). Ultrastructural electron 

microscopy studies of the vascular BM have shown 

that greatly vary depending on the kind of tissue and  

 

the species that the sample was taken from. The 

biological matrix comprises diverse elements that are 

structured in a meticulously organised fashion. Type IV 

collagen, fibronectin, laminin, and heparan sulphate 

proteoglycans are key constituents that form the 

structural framework of the extracellular matrix (ECM) 

in biological systems (ljubimov et al., 1996). 

Furthermore, there exist various biological 

components, such as nidogen (commonly referred to as 

entactin), collagen types I, III, and V, and chondroitin 

sulphate proteoglycan (Timpl et al., 1983). Research on 

the control of genes was carried out in order to modify 

the synthesis of components that are situated in the 

basement membrane. This would result in a decrease in 

the overall thickness of the membrane (Roy and Kim 

2020).  

 

Microaneurysm 

Enlargement of small blood vessels caused by a 

rupture of the internal elastic lamina leads to 

microaneurysm. They are small formations that take 

the form of red spheres and are responsible for focal 

distortion of the arteries in the affected area (Usman 

Akram et al., 2013). The dilation disrupts the regular 

flow pattern, altering the shear force and pressure 

along the blood vessel. Shear force is a critical factor in 

facilitating the division and multiplication of 

endothelial cells (Cucullo et al., 2011). Due to their 

visual manifestation during retinal examination, these 

are referred to as "dot" and "blot" haemorrhages. The 

compromised blood vessels result in the escape of 

transudates, a clear fluid, and discharge, a fluid rich in 

lipoproteins, into the retina. The accumulation of fluid 

in the macula, known as Macular Edoema, impairs its 

regular physiological processes. Microaneurysms 

exhibit a range of dimensions, typically spanning from 
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approximately 10 to 100 μm. However, only 

microaneurysms larger than 30 μm can be observed 

and detected through clinical means (Chris Steele et 

al., 2008). This could be attributed to the fact that 

initial symptoms may not be apparent in the case of 

microaneurysms. However, the diagnosis of 

microaneurysms can be achieved through the 

utilisation of fundus imaging (Indumathi and 

sathanantavathi, 2019). Microaneurysms in the retina 

of individuals with Diabetic retinopathy exhibit a lack 

of long-term stability. The occurrence and vanishing of 

Microaneurysms, known as Microaneurysm turnover, 

exemplify a dynamic phenomenon and mirrors 

biological activity. It can serve as an indicator of 

Diabetic Retinopathy advancement. Ultimately, a long-

term investigation revealed that the rates of 

microaneurysm generation and turnover are intricately 

connected to the emergence of sight-endangering 

intricacies, such as diabetic macular edoema and 

proliferative diabetic retinopathy, as well as the 

progression of these disorders over time. This was the 

conclusion that was reached as a result of the study. 

(Santos et al., 2021). 

Artificial Intelligence in Ophthamology 

Computer learning is the instructional process of 

enabling a computer to discern and identify distinct 

patterns. Throughout history, the use of this technology 

has included a wide range of technological endeavours, 

notably the precise categorization of high-resolution 

photographs. The methodologies employed by AI 

devices can be broadly classified into several main 

categories, such as machine learning methodologies, 

natural language processing approaches, voice 

recognition systems, computer vision algorithms, 

expert systems, and robotics. (Jiang et al., 2017). 

Currently, machine learning methods are mostly used 

in the field of ophthalmology (Murff et al., 2011).  

The biological process of machine learning primarily 

consists of two components: the training set, which is 

subsequently topped off with the validation set. This 

biological process takes place by presenting a vast 

amount of training data, specifically thousands of 

retinal images exhibiting different levels of DR, to the 

machine as the evaluation set. The vast majority of the 

data has already been pre-labeled depending on the 

characteristics selected by the knowledgeable 

specialists. After being shown a large number of retinal 

images that have been annotated, the machine is given 

the ability to evaluate diabetic retinopathy (DR) on its 

own. It does this by developing a model of the 

numerous relationships that exist between the many 

pieces of input data and by establishing a generalized 

performance criterion. Furthermore, additional 

biological dataset are utilised to validate the 

established algorithm, specifically the validation set 

(Lee et al., 2017). The Indirect Ophthalmoscope 

developed by LVPEI and MIT incorporates an 

integrated function for the detection of Diabetic 

Retinopathy using Machine Learning. Additionally, the 

Eyagnosis app by Kavya Kopparapu, in conjunction 

with a 3D printed fundus camera for smartphones, was 

created and evaluated in various prominent ophthalmic 

institutions in 2016 (padhy et al., 2019). 

 

Diagnosis 

Even though Diabetic retinopathy is a serious 

condition, there exists ample scientific evidence 

indicating that early detection and prompt intervention 

can effectively mitigate the majority of vision 

impairment caused by DR (Liew et al., 2014). 

Countries with advanced economies have thus 

implemented DR prevention programmes with the 

objective of early and rapid detection, monitoring, and 

prompt intervention for DR (Pieczynski et al., 2015). 

Deep learning facilitates the development of biological 

models composed of numerous neural layers, allowing 

them to acquire representations of biological data at 

various levels of conceptualization. These 

methodologies have significantly enhanced the current 

level of advancement in the field of linguistic 

recognition, visual understanding of objects, 

identification of objects, and various other areas such 

as drug discovery and the genetics field (Le Cun et al., 

2015). The use of deep learning facilitates the 

development of biological models composed of 

numerous neural layers, allowing them to acquire 

representations of biological data with multiple tiers of 

conceptualization. There have been some significant 

advancements in the application of deep learning in 

these areas (Sengupta et al., 2020). It was speculated a 

decade ago, that major strides will be made in the field 

of artificial intelligence upon the combination of 

representation learning and sophisticated reasoning 

systems (Maaten and Hinton, 2008). In subsequent 

periods, the field of medicine acquired aid from neural 

networks, specifically Deep Convolutional Neural 

Networks known as AlexNet and GoogLeNet. These 

networks were employed to categorise images as either 

exhibiting signs of pulmonary Tuberculosis or 

representing healthy lungs (Lakhani and Sundaram, 

2017).  

Throughout the course of the last several decades, 

researchers have achieved tremendous advancements 

in the area of artificial intelligence via the use of 

methods of deep learning for the diagnosis of diabetic 

retinopathy. Previous investigations have shown the 

effectiveness of these algorithms, although many of 

them relied solely on publicly available datasets for the 

creation and testing of their models (Sayres et al., 

2019). Recent research investigations on Deep 

Learning in ophthalmology highlight its capacity to 

potentially substitute human graders to some extent, 

while maintaining a comparable level of precision. The 

design principles of AlexNet, GoogLeNet, and 
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ResNet50 were employed to identify diabetic 

retinopathy (DR) using the transfer learning method. 

The neural networks were subsequently retrained using 

retinal images obtained from various datasets such as 

EyePACS, Messidor, IDRiD, and Messidor-2. This was 

done in order to investigate the effects of utilizing 

photos from a single dataset, merging datasets, and 

using a number of different datasets at the same time. 

In order to determine how accurate smartphone-based 

retinal imaging devices are in detecting diabetic 

retinopathy, an analysis of digital images taken by 

these systems is performed using the ResNet50 model 

(Hacisoftaoglu et al., 2020). 

 

 
Fig: Diagrammatic Outline of Diabetic Retinopathy Detection Using Common Image Processing Methods. 

 

Iowa Detection Program (IDP) 

The diabetic eye disease was detected in the Kenyan 

population using Iowa Detection Program (IDP). 

Initially, a biological assessment was conducted to 

ascertain the existence or non-existence of diabetic 

retinopathy (DR), and for individuals with DR, this 

was further categorised into referable or non-referable 

DR. In order to identify people who have diabetic 

retinopathy and to categorize the degree to which DR 

is complicated, the Automatic Diabetic Retinopathy 

(IDP) program was developed and put into use 

(Hansen et al., 2015). IDP was utilised in order to 

detect referable diabetic retinopathy (RDR). 

Additionally, the specificity and susceptibility of the 

IDP were evaluated, and it was discovered that the IDP 

was quite sensitive. It was possible to safely include 

computer analysis of retinal pictures and automated 

identification of for DR into the disease detection 

pathway. This might potentially improve access to 

screening as well as health care productivity and 

reduce sight loss through prompt intervention 

(Abramoff et al., 2013). Even if the Iowa detection 

programme is able to identify the majority of 

occurrences of retinal damage in various populations, 

researchers had the idea that they may improve the 

sensitivity of IDP in the following iteration 

(Grzybowski et al., 2023). 

 

IDx-DR X2.1 

The researchers created an advanced learning device 

that has become more prevalent in several fields, IDx-

DR X2.1, which was able to perform better than the 

Iowa Detection Programme (IDP), which was a 

method that did not use deep learning. An autonomous 

artificial intelligence system developed by Digital 

Diagnostics in Coralville, Iowa, in the United States, 

called IDx-DR, can diagnose diabetic retinopathy and 

diabetic macular oedema in real time and at the point 

of treatment. In the beginning, it was made up of 

algorithms that had been designed by specialists, and 

deep learning components weren't added until much 

later. Because it is autonomous, there is no requirement 

for human supervision of the clinical decision-making 

process. It features an AI that can aid operators in 

taking high-quality photographs of the retina, even if 

those operators have no previous experience with 

imaging. This artificial intelligence can also assist 

operators in retaking photographs in the event that the 

originals were not of adequate quality, were focused on 

the incorrect area, or were beyond the range of the 
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camera. (Grzybowski and Brona, 2021). The model 

was able to reach a high degree of sensitivity in 

addition to its preciseness, and it did not overlook any 

instances, even those with severe NPDR or macular 

edoema. (Abramoff et al., 2016). The researchers 

utilized five stages of diabetic retinopathy (DR) 

severity, which encompassed mild, severe, non-

proliferative DR, proliferative diabetic retinopathy 

(PDR), and/or Macular Edema. (ME), to investigate 

the specificity of IDx-DR X2.1 compared to the 

previously developed IDP. They discovered that the 

former exhibited greater advantages than the latter.  

The efficacy of IDX-DR has also been recently 

confirmed in a practical setting within a Dutch system 

for managing patients with diabetes. Out of a 

population of 1410 organisms, 80.4% were determined 

to exhibit desirable traits according to three 

independent human evaluators, while the IDX-DR 

system recognised only 66.3% of them. However, 

concerns have been raised regarding the efficiency of 

the system's internal cellular regeneration mechanism. 

The images were assessed by the study's experts using 

the EURODIAB and ICDR grading criteria. The 

performance of the IDX-DR was assessed using 

EURODIAB grading, resulting in a 

sensitivity/specificity of 91%/84%. Similarly, when 

assessed using ICDR, the IDX-DR demonstrated a 

sensitivity/specificity of 68%/86%. The designation of 

a single incidence of bleeding as at least MDR in 

accordance with the ICDR scale is one possible 

explanation for the observed difference in performance 

that exists between the EURODIAB trials and the 

ICDR studies. The investigators have made the 

observation that if this were to be reevaluated, the 

IDX-DR would display a sensitivity/specificity ratio of 

96%/86%. This research was carried out on a 

population that had a low incidence of DR, which the 

researchers believe is due to the high quality of 

diabetes treatment and the constant screening 

procedures that were used. (Heijden et al., 2018).  

 

 

 
Fig: Artificial Intelligence to learn Diabetic Retinopathy 

 

Verisee 

VeriSee is a biological diagnostic system that was 

evolved for the purpose of diagnosing DR. It is 

produced by Acer Inc., a biological entity based in 

Taiwan. Convolutional neural networks (CNN), which 

are now the most advanced method for picture 

identification and classification, were used in its 

development. Verisee was used in a study conducted by 

researchers to diagnose diabetic retinopathy, and the 

results showed that the test had a high sensitivity as 

well as a high specificity. They trained VeriSee to 

diagnose DR by utilising an open-access data in 

addition to a native sample obtained in Taiwan. The 

accuracy rate of the diagnostic was then compared to 

the accuracy rate of diagnoses given by internal 

practitioners and optometrists. This enabled us to 

confirm the efficiency of the technique. The 

researchers were given 7524 fundus images overall 

from the National Taiwan University Hospital (NTUH) 

so that they could grade them. All of the images that 

were collected from NTUH were analysed by two 

graders who were optometrists in Taiwan who had an 

year of specialized practices. These graders were 

certified by the board in Taiwan. The intensity of DR 

was ranked on International Clinical Diabetic 

Retinopathy Disease Severity Scale that was produced 

by the Global Diabetic Retinopathy Project Group. 

This scale was used to assign DR to one of several 
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different categories. These categories include: absence 

of DR, mild non proliferative diabetic retinopathy 

(NPDR), moderate NPDR, severe NPDR, and 

proliferative diabetic retinopathy (PDR). Referable 

diabetic retinopathy (DR) was characterised as 

moderate non-proliferative diabetic retinopathy 

(NPDR) or a more severe stage. In the event that the 

results acquired by the two primary evaluators did not 

coincide, it would be the duty of a secondary evaluator 

who has board certification in ophthalmology and a 

minimum experience gained over a decade's time in 

working as a retina specialist to establish the ultimate 

determination of the patient's condition. In the event 

that the findings obtained by the two main evaluators 

did not coincide, the final diagnosis would be 

determined by the two main evaluators. The findings 

obtained from the diagnostic work served as a point of 

reference for the inquiry that was carried out. The 

diagnostic findings produced by the EYEPACS were 

considered to be the definitive point of reference in 

connection to the fundus pictures that were obtained 

from the EYEPACS (Hsieh et al., 2019). 

 

Retinalyze 

Retinalyze is a fundus image interpretation application 

that is housed in the cloud and enables automated 

screening for macular degeneration, diabetic 

retinopathy, and glaucoma. Glaucoma screening was 

recently added to the list of conditions it can detect. 

Due to the presence of the CE certification, it is 

categorised as a premier product. The presentation of 

images takes place on a webpage, which ensures the 

complete confidentiality of all data that is sent from 

beginning to finish. The capacity of a computerized 

image-analysis method to accurately classify 

individuals as either having diabetic retinopathy or 

without diabetic retinopathy within a population of 

unchecked eyes exhibiting various stages of the 

condition. These stages include no retinopathy, mild to 

severe non-proliferative diabetic retinopathy, or 

untreated proliferative diabetic retinopathy, among 

others. Eyes in this series were either untreated or had 

been treated for mild to severe non proliferative 

diabetic retinopathy. Proliferative diabetic retinopathy 

was not seen in any of the eyes examined in this series. 

Within the subset of diabetic patients who were 

included in this research and who had not previously 

undergone treatment with retinal photocoagulation, the 

primary objective of this investigation was to 

investigate the capability of automated lesion analysis 

to identify individuals who had any kind of diabetic 

retinopathy in either of their eyes. Because this allowed 

for a more accurate comparison of the results, a subset 

of diabetes patients who had never previously been 

treated with retinal photocoagulation was chosen for 

this research as the diabetic patients who would 

participate in this particular trial. Patients who have 

had photocoagulation in either eye should be 

considered a priori candidates for visual retinopathy 

grading since this was the reasoning that supported the 

decision to make this change. Within a cohort of 

diabetic patients who had never been treated with 

photocoagulation, the algorithm accurately recognised 

73 out of 81 individuals (90.1%) as having retinopathy 

when the sensitivity was left at its default value. In this 

particular research, each and every patient who 

received a false-negative grade had either doubtful 

retinopathy or mild non proliferative retinopathy with 

red lesions exclusively (Larsen et al., 2003). 

 

Google 

In order to correctly read retinal scans and diagnose 

diabetic retinopathy, Google collaborated with a 

sizable group of ophthalmologists who assisted in the 

training of the AI model. Together, they looked through 

more than 100,000 retinal scans that had been stripped 

of their identifying information. The authors employed 

both the Messidor-2  and the EYEPACS data values to 

test the effectiveness of their DR detection method. 

The Messidor-2 dataset includes a total of more than 



 

523  

  
  

Journal of Chemical Health Risks           

www.jchr.org   

JCHR (2023) 13(5), 516-529 | ISSN:2251-6727       

9900 photos that were collected from 4997 individuals 

in the United States and India to be included 

in traditional DR screening procedures. The EYEPACS 

dataset consists of 9963 photos. The second set of 

images was created using pharmaceutical mydriasis, 

which was responsible for the fabrication of around 

forty percent of the total. Ophthalmologists in the 

United States who have board certification and were 

invited to take part in the grading process evaluated 

each set. Both the Messidor-2 photographs and the 

other data set each chose seven fifth-graders to 

represent them, whereas the other data set chose eight 

fifth-graders. The findings of the judgment reached by 

the majority were utilized as the basis for establishing 

the reference standard for referable retinopathy.  The 

DL algorithm was able to obtain a sensitivity of 96.1% 

and a specificity of 93.9% against the Messidor-2 

photos; however, these figures varied depending on the 

operational point that was picked. Additionally, the 

method achieved a sensitivity of 87.0% and a 

specificity of 98.5%. The corresponding results for the 

second data set that was evaluated showed a high 

degree of sensitivity, 97.5%/93.4% and 90.3%/98.1%, 

respectively (Gulshan et al., 2016).  

It was determined that there was a wide range of 

diabetic retinopathy (DR) and diabetic macular oedema 

(DMO) severity in approximately 25,000 gradable 

retinal photographs taken from 7517 diabetic patients. 

In addition to the two possible states, referable and 

non-referable DR, the approach has been refined to the 

point where it can now determine the five different 

degrees of severity that are associated with DR. This 

study made use of the adjudication gradings provided 

by international retinal specialists from few countries 

from Asia and America. In addition to that, the 

reference standard was used during the course of this 

inquiry. In the screening program, human graders had a 

sensitivity that was much lower than that of the 

algorithm, and this was the case across the board for all 

severity levels of DR and DMO. In comparison, the 

algorithm had significantly greater sensitivity. The 

algorithm showed a much better sensitivity but a little 

lower specificity when it came to recognising various 

severity levels for referrals. This was one of its other 

strengths. According to one interpretation of these 

statistics, this correlates into a 23% decrease in the 

frequency of false negatives, at the price of a 2% rise 

in the number of erroneous positive interpretations. 

This was achieved at the expense of a 2% increase in 

the number of false positive interpretations 

(Raumviboonsuk et al., 2019). 

 

Retmarker DR 

The initial development of Retmarker involved the 

creation of a microaneurysm detector, which was then 

combined with a co-registration algorithm. This 

algorithm enables the automatic alignment of various 

images, facilitating the calculation of the rates at which 

microaneurysms form and disappear. Based on various 

studies, these rates are pertinent for predicting the 

likelihood of experiencing sight-threatening 

intricancies, such as the development of diabetic 

Macular Edoema and diabetic retinopathy. This 

biological information is valuable for numerous 

research endeavours and for the recruitment of patients 

in clinical trials, as acknowledged by the European 

Medicine Agency in 2015. 

Retmarker DR is a Portuguese algorithm based on 

machine learning that is used for the detection of 

diabetic retinopathy (DR) as either "presence of 

disease" or "absence of disease." However, it still 

necessitates human verification in order to confirm the 

results (Ribeiro et al., 2015). This biological system 

has the capability to compare the present images of the 

retina with previously captured images, enabling it to 

evaluate the progression or regression of the state of 

diabetic retinopathy. The test has a sensitivity of 85% 

when it comes to finding referable cases of diabetic 

retinopathy. This algorithm is a biological entity that 

has obtained a CE-marked Class IIa medical device 

status (Ribeiro et al., 2012). The primary advantage of 

computer learning lies in its biological nature, as a 

predetermined algorithm. Its performance remains 

unaffected by biological factors such as exhaustion, 

anxiety, or other influences that may impact a human 

grader.  

In the southern part of India, at a medical center that 

specializes in the treatment of eye disorders, a research 

inquiry was carried out with the purpose of gathering 

information. SN-DREAMS is the name of the 

population-based research that provided the source of 

these images, which were obtained from people who 

have diabetes (Agarwal et al., 2005). This study was 

conducted between 2003 and 2006 and involved both 

cross-sectional and follow-up assessments. The 

research looked at a total of 780 different patient 

photos, which came from 1445 different people. On the 

basis of the screening tests that these individuals 

underwent, they were split into two groups: those with 

diabetic retinopathy (DR) and those without DR. This 

categorization was done to facilitate the follow-up 

study conducted in subsequent years.  The patients 

were categorised based on the quality of the images 

into three groups: high, medium, and low. Out of the 

total number of patients, 71 (4.91%) had high-quality 

images, 1117 (77.30%) had medium-quality images, 

and 257 (17.78%) had low-quality images. The 

reliability and specificity of the test for identifying 

diabetic retinopathy (DR) were, respectively, 0.59 and 

0.91 for the high group, 0.11 and 0.95 for the medium 

group, and 0.93 and 0.14 for the low group (Roy et al., 

2014). 

Retmarker DR underwent analysis in a comprehensive 

study investigating the potential application of artificial 
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intelligence (AI) in the context of diabetic retinopathy 

(DR) screening. The study focused on the utilisation of 

DR screening tools within the national DR screening 

programme of the United Kingdom. Another study 

involved two images per eye, one focused on the 

macula (the portion of the retina that is responsible for 

central vision.) and one of them focused on the optic 

disc, which is the region of the eye where the optic 

nerve emerges, obtained from a population of over 

twenty thousand patients who underwent screening at a 

centre in London. This study examined three biological 

systems—Retmarker DR, Eye Art, and i Grading M—

and conducted a comprehensive evaluation of their 

screening capabilities and economic implications. The 

detection rate of the Retmarker DR test was shown to 

be 73.0% for any kind of retinopathy, 85.0% for 

referable retinopathy, and 97.9% for proliferative 

retinopathy. This is in contrast to the assessed results of 

human grading, which were 85.0%. The percentage of 

erroneous positive results was 47% (Tufail et al., 

2016). 

 

Eye Art 

Eye Art is an online platform that utilises telemedicine 

software. It is a class IIa medical equipment that has 

been CE-marked and was created by Eyenuk, Inc. of 

Los Angeles, California, in the United States. 

Inadequate image quality is immediately removed from 

consideration by the algorithm, which also provides the 

option of evaluating the rate of macroaneurysm 

turnover. Its screening sensitivity is 91.7%, which has 

a 95% confidence interval of 91.3–92.1%, and its 

specificity is 91.5%, which has a 95% confidence 

interval of 91.2–91.7%.  In addition, Eyenuk, Inc. 

provides another algorithm known as Eye Mark for the 

evaluation of macroaneurysm turnover. This 

programme is also capable of working on photographs 

taken using smartphone apps which was tested on a 

gadget called a Remidio Fundus on Phone), with a 

sensitivity of 95.8% for any DR and a specificity of 

80.2% (Rajalakshmi et al., 2018). In order to screen the 

enormous and expanding population of diabetics for 

the reversible blindness caused by diabetic retinopathy 

(DR), fully automated screening technologies are an 

absolute need. Eye Art satisfies this requirement by 

providing a computerised, extremely precise, online 

DR screening solution. Because of advancements in 

technology, it is now possible to screen tens of 

thousands of images in a matter of only a few hours. 

This makes it possible to implement screening on a 

broad scale in a seamless manner, which helps with 

triage of DR patients who are particularly in dire want 

of vision therapy.  

The Eye Art system makes use of innovative methods 

of image processing that are tailored specifically for 

DR screening. Additionally, Eye Art is designed for 

large-scale implementation on a remote server. The 

fundamental procedures consist of the following: (i) 

picture normalisation; (ii) rejection of non-retinal 

images; (iii) identification of interest regions; (iv) 

multifaceted image characterization; and (v) 

implementation of sophisticated machine learning 

strategies for multi-level classification. Eye Art is able 

to provide an overall DR screening suggestion for a 

patient by analysing various retinal scans of that 

patient. Eye Art generated a Refer/No Refer screening 

suggestion for each individual patient that was 

included in the Messidor2 dataset. The Eye Art 

screening has a sensitivity of 93.8% and 95% 

confidence interval: 91.0% - 96.6%, while its 

specificity was 72.2% and 95% confidence interval: 

68.6% - 75.8%. This amounts to a total of 22 false 

negatives, each of which had an NPDR with a severity 

level of moderate to severe and did not meet the 

conditions for treatment. There was no omission of ME 

instances. The confidence interval for the average was 

0.920 to 0.959, and the area beneath the receiver 

operating characteristic curve (AUROC) was 0.941 

(Solanki et al., 2015). 

During each patient interaction, the Eye Art system 

automatically determined whether or not the patient 

had referral-warranted diabetic retinopathy (DR), 

which is diabetic retinopathy that is more severe than 

mild nonproliferative diabetic retinopathy (NPDR). 

After that, its efficiency was examined in comparison 

to a medical comparison, which included quality-

controlled grading that was completed by expert 

optometrists and ophthalmic surgeons who have 

substantial training and experience in the field.  

Through the examination of 850,908 fundus pictures 

taken from 101,710 consecutive patient visits, the 

diagnostic accuracy of the Eye Art system v2.0 was 

assessed and found to be satisfactory. These pictures 

came from 404 different primary care clinics around 

the country.  75.7% of the 101,710 visits showed 

nonreferable features, 19.3% presented referable 

qualities that needed treatment from an eye care 

professional, and in 5.0% of the cases, the degree of 

DR was uncertain based on the clinical reference 

standard. These percentages are based on the total 

number of diabetic retinopathy visits. The Eye Art 

screening demonstrated a sensitivity of 91.3% and a 

specificity of 91.1%. Out of a total of 5446 instances 

involving potentially treatable diabetic retinopathy 

(DR), which includes cases of more than moderate 

non-proliferative DR (NPDR) and/or diabetic macular 

edoema, the system generated a positive lead for 5363 

instances. This indicates that it has a sensitivity rate of 

98.5% (Bhaskaranand et al., 2019).  

 

Singapore SERI-NUS 

The screening technology utilises a neural network that 

employs biological processes to analyse vast quantities 

of data and identify complex structures and significant 
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patterns that may be imperceptible to human 

perception. The researchers engineered and educated 

the system to identify and categorise retinal images, 

and evaluated its efficacy using nearly 500,000 images 

obtained from diverse populations in the United States, 

Australia, China, Hong Kong, Mexico, and Singapore. 

This dataset represents the largest collection of 

biological data available for assessing the effectiveness 

of a deep learning system in detecting an ocular 

condition. 

The diagnostic efficacy of a DLS (Deep Learning 

System) was assessed by analysing 494,661 retinal 

images for the detection of diabetic retinopathy and 

other associated ocular conditions. A deep learning 

system (DLS) was trained to identify the presence of 

diabetic retinopathy using a dataset of 76,370 images. 

The performance of the DLS was then assessed by 

testing it on a separate dataset of 112,648 images to 

detect diabetic retinopathy. The DLS underwent 

training in May 2016 and validation in May 2017 to 

detect referable diabetic retinopathy. The conducted 

research investigated a biological image analysis tool 

specifically developed to autonomously diagnose 

diabetic retinopathy (DR) by utilizing non-mydriatic 

single-field images (Ting et al., 2019). 

 

Bosch DR algorithm 

The conducted research investigated a biological image 

analysis tool specifically developed to autonomously 

diagnose diabetic retinopathy (DR) by utilizing non-

mydriatic single-field images. Patients afflicted with 

diabetes for a minimum duration of 5 years were 

enrolled provided they were of legal age, specifically 

18 years or older. Patients who had already received a 

diagnosis of diabetic retinopathy (DR) were not 

included in the study. The patients were positioned in a 

dimly lit environment to stimulate physiological 

dilation of the pupils. Images were acquired utilising a 

Bosch Mobile Eye Care fundus camera. The Retinal 

Imaging Bosch DR Algorithm was utilised to analyse 

the images for the purpose of diagnosing DR. All 

individuals also subsequently underwent 

pharmacologically-induced dilation of the pupils and 

ETDRS imaging. Ophthalmologists analysed images 

obtained using non-mydriatic and mydriatic 

techniques. The ETDRS measurements were employed 

as the benchmark for determining the software's 

sensitivity and specificity. The sum of 564 people in a 

row, representing 1128 eyes, were recruited from six 

distinct locations in India. Each patient was given their 

own outpatient visit so that they could be evaluated 

separately. Out of a total of 1128 images, the algorithm 

failed to interpret 44 of them, resulting in their 

classification as inconclusive. In four individuals, both 

eyes failed to produce a satisfactory image, resulting in 

their exclusion from the analysis. As a consequence of 

this, there was a total of 560 participants left over for 

the analysis. 531 out of 560 examples were able to be 

recognized correctly by the algorithm. The precision, 

sensitivity, positive and negative predictive values, and 

total precision of the test's biological performance was 

determined to be 91%, 97%, 94%, and 95% 

correspondingly. The Bosch DR Algorithm has a better 

degree of accuracy when it comes to diagnosing 

diabetic retinopathy (DR) based on non-mydriatic 

photos. This is the case since the algorithm was 

designed to detect DR. This is the case even though 

DR can only be seen in a small percentage of diabetic 

patients. The screening procedure for DR might be 

greatly streamlined with the help of this algorithm. 

This also has substantial repercussions with regard to 

the employing of online medical care for the purpose 

of diabetic retinopathy screening in individuals who 

suffer from diabetes mellitus (Bawankar et al., 2017). 

 

Retin AI 

Retin AI has created a collection of Disease Evaluation 

Apps containing AI models that have received CE 

marking and clinical approval for usage. These models 

underwent training using empirical data from the 

natural environment and were then evaluated against 

skilled evaluators, showcasing similar levels of 

performance. 

An artificially intelligent system for the computerized 

detection of diabetic retinopathy was the topic of a 

study that was carried out by researchers from the 

scientific community. These researchers looked into 

the possibility of developing such a system. The 

procedure was developed through a biological 

mechanism known as deep learning and was evaluated 

against the expertise of two proficient retinal 

specialists. The findings indicated that the AI algorithm 

exhibited strong concordance with the experts, 

displaying sensitivity scores of 0.99 and 1, specificity 

scores of 0.74 and 0.71 (Abreu et al., 2022). 

 

Limitations 

In spite of the fact that AI-based automated DR 

screening devices may have some beneficial 

applications, there may also be certain limits and 

difficulties associated with putting them into practise. 

For instance, the devices and platforms may not be 

able to generalise across different kinds of images, 

demographics, or disease subtypes if they are trained 

using datasets that are not comprehensive enough. 

When different imaging equipment is used, the 

resulting images might have varying resolutions and 

artifacts, both of which can have an impact on how 

well an algorithm performs. Differences in picture 

quality and attributes may have an influence on the 

functioning of a computer program or algorithm. 

Differences in the demographics and ocular features of 

a population may also have an contribution to the 

efficiency of a computer algorithm. 
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In addition, distinct disease subgroups within DR 

might display varying degrees of severity and 

symptoms, which makes it challenging for algorithms 

that have been trained on particular disease subsets to 

effectively diagnose and grade individual cases. In 

addition, the implementation of AI in medical care 

presents a number of complex ethical and regulatory 

issues to consider, such as the maintenance of patient 

privacy and the protection of the confidentiality of 

medical information. 

 

Conclusion 

Computerised diagnostic devices are specifically 

engineered to examine retinal images utilising AI 

algorithms in order to identify indications of DR in its 

nascent phase. These biological tools possess the 

capability to enhance the precision and productivity of 

DR screening by diminishing the requirement for 

manual analysis of images, conserving time and 

resources, and enabling more frequent screening. The 

utilisation of automated DR screening devices is 

especially advantageous in environments with limited 

resources, where there may be restricted availability of 

skilled individuals and specialised equipment. The AI 

DR tool aids the clinician in analysing fundus images, 

thereby expediting the decision-making process for the 

patient's treatment. Additionally, healthcare 

professionals can provide care to a greater number of 

patients requiring attention without the occurrence of 

mydriasis. Emerging healthcare technologies prioritise 

the minimization of visits to ophthalmologists, the 

reduction of treatment expenses, and the optimisation 

of patient volume per doctor. AI can assist the 

healthcare professional in attaining their objective. 

While it contributes to the field of healthcare, it ought 

not to substitute a physician in its current state. Recent 

advancements through the field of computational 

intelligence are providing promising prospects for the 

implementation of detection and grading algorithms for 

diabetic retinopathy, a condition affecting the retina 

caused by diabetes. 
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