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Abstract 

 
Global population growth is causing an increase in energy and the material 

consumption, which has an impact on the environment. Increased generation of 

solid waste, increased air pollution from cars and factories, and contamination of 

surface and groundwater are a few of these effects. The integration over the 

previous 20 year has changed of materials with artificial nano-scales. The 

nanotechnology market environmental applications are growing quickly rising, 

demonstrating the significance of such developments in both research and 

practices. By manipulating the shape and size of the materials at the nanoscale, 

nanotechnology is an emerging technology that can help combat pollution. 

Through the direct use of Nanomaterials for the detection, prevention and 

removal of pollutants as well as through the use of superior industrial design 

techniques and the creation of environmentally friendly goods, nanotechnology 

has the potential to improve the environment. Because of their small size and 

high surface area, nanoparticles exhibit increased reactivity. Although this trait 

has a variety of advantages and uses. This review provided comprehensive 

details on the use of nanotechnology in pollution control, including source 

reduction or pollution prevention, remediation or degradation of pollutants. 

Examined how to synthesized nanoparticles and nanotechnology is used in 

control and reduction of water pollution. 
 

Introduction  

One of the numerous definitions for the term 

“pollution” is “the existence of a material in the 

environment whose chemical make-up or amount 

inhibits the operation of natural processes and has 

negative impacts on the environment and human health 

[1].”Pollution, a major environmental concern, has 

increased due to urbanization and population growth. 

As technology advances, new toxins emerge, posing a 

serious threat to human life and the environment. 

Industrialized nations release pollutants like carbon 

monoxide, heavy metals, hydrocarbons, nitrogen 

oxides, organic compounds, sulphur dioxide, and 

particulates. Acid rain is primarily caused by burning 

fossil fuels. Water pollution is also a concern, resulting 

from garbage disposal, fertilizer leaks, oil spills, 

herbicide use, industrial processes, and natural fossil 

fuel extraction [2-6].Every sector of the environment is 

experiencing major issues as a result of growing 

anthropogenic activities, whether it be in the areas of 

air, water, or soil, as a result of persistent and 

inappropriate changes made to their natural states. 

Environmental contaminating agents are randomly 

added to the environment by industrial, residential, and 

agricultural processes that are necessary for the human 

populations[7]. According to estimates from the World 
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Health Organization, air pollution claimed the lives of 

more than six million people in 2016(WHO 2018). In 

the same year, water contamination contributed to 

nearly 108 million fatalities worldwide. In 2016, there 

were around 13.7 million fatalities worldwide that 

might be attributed to the hazardous 

environment[8].Air pollution in India claimed the lives 

of over 1.6 million people in the same year. 

Nanotechnology has significantly advanced 

technology, particularly in environmental remediation. 

Nanomaterials have larger surface-to-volume ratios, 

improved reactivity, and can be functionalized to target 

specific contaminants. The deliberate tinkering of 

nanoparticles' physical qualities can also enhance their 

effectiveness in pollutant cleanup. This technology has 

transformed the field of environmental remediation [9-

13]. This review focuses on the detrimental impacts of 

pollutants on human health and environmental 

pollution remediation techniques. On the use of various 

kinds of nanomaterials for eliminating contaminants. 

Additionally, a general overview of nanoparticles 

synthesis processes, their characterization methods, 

and applications in many domains has been provided. 

 

Nanotechnology 

Nanotechnology studies particle size and structure, 

producing nanomaterials ranging from 1 to 100 nm. 

Rapid technological advancements enable the 

development of nanomaterials for environmental 

pollution remediation. Nanoparticles have been 

developed to clean up polluted water, air, and soil from 

biotic and abiotic factors. By using nanotechnology, 

toxins in soil, water, and air can be reduced [14-16]. 

Nanoparticles are increasingly used in various 

disciplines, including material science, chemistry, 

physics, and medicine. Originating from the Greek 

word "nano," they have distinct granular phases and 

solute characteristics, with a surface to volume ratio of 

35-45%. Their specific surface area influences intrinsic 

properties [17-18]. 

 

Methods of Nanoparticles Synthesis  

Top-down and bottom-up approaches are two methods 

for synthesizing nanoparticles, used in fields like 

nanotechnology, materials science, and chemistry. 

Top-down methods break down bulk materials into 

tiny pieces using physical, chemical, and mechanical 

techniques. Bottom-up approaches use small 

components to create complex structures, self-

assembling under specific conditions. Biosynthesis of 

nanoparticles uses bottom-up methods, utilizing a 

biological system for oxidation-reduction at room 

temperature and pressure [19-22]. Figure 1 shows that 

different approaches and techniques using for 

nanoparticles synthesizing. 
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Fig1. Different approaches and techniques for nanoparticles synthesis [20,22] 

 

Physical method 

There are various physical methods for synthesizing 

nanoparticles. These methods rely on physical 

processes to create nanoparticles and are often chosen 

for their ability to produce highly controlled and well-

defined nanoparticles. Some common physical 

methods for nanoparticles synthesis include: 

 

Mechanical milling’s  

Mechanical milling, invented by John Benjamin in 

1970, involves using high-energy ball milling to reduce 

particle size. The effectiveness of this process depends 

on the method of operation and the properties of the 

milling powder.  

 

There are two types of milling: low energy and high 

energy milling. Intense ball milling is commonly used 

to produce nanoparticles, particularly inter-metallic 

nanoparticles [23,24]. 

 

Laser ablation 

The laser ablation method uses laser irradiation to 

reduce particle size to nanoscale. It involves pulsed 

laser irradiation on a solid material, typically using Ti: 

Sapphire, copper vapour lasers, and Nd: YAG 

(neodymium-doped yttrium aluminium garnet) lasers. 

The material breaks down into nanoparticles, which 

remain in the liquid around the object, creating a 

colloidal solution. The amount of ablated atoms and 

particles is determined by the laser pulse duration and 

energy [25]. 

 

Laser pyrolysis  

Laser pyrolysis is a method for producing 

nanoparticles by activating laser energy, promoting 

homogeneous nucleation processes. This results in 

extremely localized heating and cooling, with the most 

popular type being infrared CO2 laser. Once the 

condensable product reaches super saturation, 

nanoparticle production begins in CO2 pyrolysis [26].  

 

Physical vapour deposition  

Physical deposition involves placing material on a 

surface as nanoparticles or thin sheets, vaporizing it 

using controlled vacuum techniques like thermal 

evaporation and sputtering deposition. Lanthanum 

strontium cobalt thin sheets are often synthesized using 

pulsed vapour deposition, where a solid target is 
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subjected to laser ablation, generating plasma and 

depositing the ablated species on the base material[27]. 

 

Chemical method 

Chemical reactions are popular methods for creating 

nanoparticles, allowing precise control over size, 

shape, composition, and surface characteristics. 

Popular chemical techniques include chemical 

synthesis, synthesis of nanoparticles, and synthesis of 

nanoparticles. 

Colloidal method 

The process of producing gold, iron, molybdenum, and 

silver nanoparticles involves the use of reducing agents 

like Na3C6H5O7. This technique was first proposed by 

Turkevich in 1951 for producing Au monodisperse 

colloidal solutions. The process involves reducing a 

metal salt in a liquid solution, yielding nanoparticles as 

residues. After boiling Chloroautic acid and trisodium 

citrate, seed crystals transform into gold nanoparticles 

[28-29]. 

 

Chemical vapour deposition method 

In the late 19th century, chemical vapour deposition 

was first documented and patented for creating carbon 

fiber threads and carbon powder colour pigments for 

electric lamps. This technique involves the chemical 

reaction of gaseous molecules with atoms to deposit a 

thin film of the target substance on an outer layer, often 

resulting in atomic layer deposition (ALD) thin films 

[30-31]. 

 

Sol-gel method 

Livage et al. (1988) reviewed a sol gel chemistry 

method for transition metal oxides, involving direct 

metal blending with oxide or nanoparticles in 

prehydrolyzed silica sol, matrix-forming colloids, or 

reduction and complexation with silane before 

hydrolysis, resulting in the production of nanoparticles 

[32].This method uses gelatine and colloidal 

suspension to create continuous-flowing networks in a 

liquid phase. Colloidals are created using metal ion 

precursors like alkoxysilanes and alkoxides. 

Teramethoxysilane and tetraethoxysilane are 

commonly used for silica gel. Metgal alkoxides are 

water-immiscible precursors for various metals. 

Alcohol is used as a universal solvent. The process 

involves particle expansion, accumulation, hydrolysis, 

and precipitation [24]. 

 

Spray pyrolysis 

Spray pyrolysis is a process where a hot reactor is 

heated to evaporated nanoparticle precursors, typically 

in the form of acetate, nitrate, or chloride. The 

apparatus consists of a fluid nebulizer, a 

thermostatically controlled vertical tubular reactor, and 

a precipitation device. Atomized methods, such as two 

fluid nozzles, vibrating orifice, spinning disk, 

ultrasonic sound, air-assisted pumps, or sprayers, can 

be used. Ultrasonic spray pyrolysis creates atomized 

droplets from the precursor solution, which are then 

carried to the reactor furnace and collected through a 

collection system [33-34]. 

 

Biological method 

Green synthesis techniques are a growing trend in 

nanotechnology, addressing safety, high cost, and 

reaction-related challenges. These methods combine 

clean chemistry, atomic economy, environmentally 

friendly chemistry, and benign by design chemistry to 

reduce environmental and public health risks and 

improve chemical applications.Anenvironmentally 

responsible technique create nanoparticles is by using 

the biological method, which is provided as an 

alternative to chemical and physical methods. The 

biological technique, which involves the use of 

bacteria, fungi, yeasts, molds, algae, and plants, 

enables the synthesis of metallic nanoparticles with 

various sizes, shapes, compositions, and 

physicochemical characteristics in a single step. This 

process involves the reduction of molecules found in 

plants and microorganisms, including proteins, 

enzymes, phenolic compounds, amines, alkaloids, and 

pigments [35-37]. 

 

 

 

Nanoparticles synthesis using bacteria 

Bacteria are crucial in the production of nanoparticles 

due to their ability to reduce metal ions. Green 

synthesis technology offers a safe, nontoxic, and 

environmentally acceptable solution. Prokaryotes are 

also attractive for synthesizing metallic nanoparticles 

due to their abundance and adaptability. Bacteria are 

easy to grow and control, as they multiply quickly and 

can be controlled by regulating factors like 

oxygenation, temperature, and incubation time. This 

allows for the production of nanoparticles of various 

sizes and shapes, demonstrating the growing interest in 

using naturally available resources for nanoparticle 

synthesis [38-39]. Here are a few instances of bacteria 

that have been employed to create nanoparticles 

(Table1). 

 

Table1 List of microorganism (Bacteria) that synthesize metal nanoparticles 
S.No Microorganism Nanoparticles Size (nm) Techniques used for characterization References 
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1 Aspergillus terreus Lead selenide 20-50  TEM, SEM, XRD, UV-Vis, FTIR [40] 

2 Pseudomohasstutzeri Ag 20-100 TEM, UV- Vis [41] 

3 Lactobacillus casei subsp. Ag 25-50 TEM, UV- Vis [42] 

4 E. coli Cd telluride 2-3 TEM, XRD, UV- Vis [43] 

5 Rhodococcus species Au ~20 TEM, UV- Vis [44] 

6 Sachharomycescerevisae Cds 2.5-5.5 TEM, XRD, UV- Vis [45] 

7 Azospirillumbrasilense Au 5-50 TEM, DLS, UV- Vis [46] 

8 Helminthosporumsolani CdSe 5.5 TEM, UV- Vis, FL, EDS, XPS [47] 

9 Klebsiella pneumonias Ag 50 TEM, EDS, UV- Vis [48] 

10 Shewanelloneidensis Cu 20-40 TEM, STEM, XANES, EELS, SBFSEM [49] 

 

Nanoparticles synthesis using Fungi 

Fungi are an eco-friendly method for creating 

metal/metal-oxide nanoparticles due to their variety of 

enzymes. They can produce more nanoparticles than 

bacteria, and their enzyme and protein can be used as a 

reducing agent to create metal nanoparticles from 

metal salt. Metals like Ag can attach to cytoplasmic 

membranes and decrease, creating silver nuclei and 

nanoparticles. Common fungi like Fusarium 

oxysporum, Aspergillus fumigates, and Trichoderma 

reesei secrete specific reducing agents to eliminate 

these metal ions (Table2) [50-51]. 

Fungi are superior microbes due to their ability to 

withstand various conditions in bioreactors, grow 

slowly, and be easily handled. They also grow slowly 

and are simple to manufacture. Reductive proteins 

secrete more nanoparticles, which can be processed 

later. The nanoparticles, precipitated outside the cell, 

are free of extraneous cellular components, making 

them suitable for various applications [52,55]. 

 

Table2 List of microorganism (Fungi) that synthesize metal nanoparticles 
S. No. Microorganism Nanoparticles Size (nm) Techniques used for characterization References 

1 Fusarium oxysporium Ag 5~15 TEM, UV-Vis [51] 

2 Schizophyllum commune Ag 54-99 SEM, FTIR, SDS-PAGE, UV-Vis [52] 

3 Hormoconisresinae Au 3-20 TEM, EDS, XRD, UV-Vis [53] 

4 Saccharomyces cerevisiae CdSe 15-20 TEM, EDS, FL, laser scanning microscpoe [54] 

5 Aspergillus flavus fungus PbS 35-100 TEM, UV-Vis, FL, XRD, EDS [55] 

6 Sachharomycescerevisae TiO2 ~12.6 XRD, TEM, SAED [56] 

7 Trichoderma viride Ag 5-40 FTIR, TEM, EDS [57] 

8 Endophytic fungus Ag 25-30 TEM, FTIR, UV-Vis [58] 

 

Nanoparticles synthesis using yeast 

Research explores the use of yeast in manufacturing 

metallic nanoparticles due to their advantages over 

bacteria, including bulk production, ease of regulation, 

enzyme creation, and quick growth. S.pombe's 

sulphide nanoparticles were used to create a calcium 

diode, and standardization and documentation of 

suitable conditions for Ag nanoparticle preparation 

were established (Table3) [59, 60]. Yeasts, including 

Sacchromyces cerevisiae, are categorized into various 

kingdoms and have around 1500 known species. They 

are used in fermentation of dough, beer, and alcohol, 

and have significant industrial value. Using yeast cells 

as NP-carriers allows for straightforward encapsulation 

methods, eliminating the need for stabilizers. NPs 

biosynthesis aims to reduce cytotoxicity through 

cellular defense mechanisms, using substances like 

phytochelatins and glutathione to bioreduce metal ions 

[61, 62]. 

 

Table3 List of microorganism (Yeast) that synthesize metal nanoparticles 
S.No Microorganism Nanoparticles Size (nm) Techniques used for characterization References 

1. Candida glabrata CdS 20-29 A֯ X-ray analysis [63] 

2. S. cerevisiae Ag 2.5-20 TEM, UV-Vis [64] 

3. Schizosacchromyces pombe CdS 1-1.5 TEM, XRD, UV-Vis [59] 

4. Yeast strain MKY3 Ag 2-5 TEM, XRD, X-ray photoelectron 
spectroscopy 

[60] 

5. Yeasts cell TiO2 <12 SEM, TEM, XRD, EDX, UV-Vis [65] 

6. Yarrowialipolytica Au  - SEM-EDS, XRD, FTIR, UV-Vis [66] 

7. Pichia jadnii Au 100 SEM, TEM [67] 

 

Nanoparticles synthesis using plant extract 

Plants are a cost-effective and easy-to-maintain 

chemical manufacturing source, known for their ability 

to detoxify heavy metals, addressing environmental 

pollution. Plant-assisted nanoparticle synthesis is faster 

than chemical nanoparticles, thanks to the 
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phytochemicals found in various plant parts like fruit, 

stems, leaves, and roots. This environmentally friendly 

method is widely used in the production of 

nanoparticles (Table4) [68,69].Plant leaf extracts, rich 

in essential phytochemicals like flavones, terpenoids, 

sugars, ketones, aldehydes, carboxylic acids, and 

amides, are used to create nanoparticles under various 

experimental conditions, influencing their output and 

stability [70].The plant portion for nanoparticle 

creation can be cleaned, boiled in distilled water, and 

then pressed, filtered, and added with appropriate metal 

solutions, revealing their production, and allowing us 

to separate them, as shown in Figure 2. The synthetic 

procedure is completely eliminated by using natural 

plant extract, which is both cost-effective and 

environmentally friendly [71]. 

 

 
Fig-2 Process of Nanoparticles synthesis [69, 71] 

 

Table4 List of plants that synthesize metal nanoparticles 
S.No Plants  Source of 

NPs 
Nanoparticles Size (nm) Techniques used for 

characterization 
References 

1 Gelidiumpusillum Seaweed 

extract 

Au 12 ± 4.2 TEM, UV-Vis, FTIR, XRD, DLS [72] 

2 Dionaea muscipula Plant tissue Ag 5 - 10 SEM, TEM, DLS, XPS, EDS [73] 

3 Citrum limon Outer peels TiO2 80 -140s XRD, EDX, SEM, TEM [74] 

4 Ficus carica (Lemon) Leaf Fe2O4 43 - 57 SEM, EDX, XRD, FTIR, UV-

Vis 

[75] 

5 Ananas comosus (Pineapple) Peel Ag 12.4 TEM, FTIR, UV-Vis [76] 

6 Hageniaabyssinica Leaf Cu 34.76 UV-Vis, XRD, FTIR, SEM, 
EDXA, TEM, SEAD 

[77] 

7 Carica papaya (papaya) Peel CuO 85 - 140 XRD, EDX, FTIR,  [78] 

8 Artocarpus heterophyllus 

(Jack fruit) 

Peel Fe 33 FTIR, SEM, TEM, XRD, EDX [79] 

9 Banana peel Ag  - SEM, XRD, FTIR, EDS, UV- 

Vis 

[80] 

10 Walnut Shell Cu 15 - 22 TEM, EDX, FTIR [81] 

11 Mentha arvensis Leaves TiO2 20 - 70 UV-Vis, XRD, FTIR, SEM [82] 

12 Ganoderma lucidum Reishi 
mushroom 

Ag 15 - 22 XPS, XRD, TEM, FTIR, UV-Vis [83] 

13 Cotton bolls peel Pd 275 XRD, TEM, UV-Vis, FTIR [84] 

14 Grape Stalk Ag 27.7 ± 0.6 UV-Vis, EDX, FTIR,  [85] 

15 Azadirachta indica (neem) Leaf ZnO 9.6 – 25.5 TEM, XRD, EDX, FTIR, UV-
Vis 

[86] 

 

Characterization of NPs 

Nanoparticle characterization is crucial for 

understanding and managing their production and 

applications. Techniques like SEM, FTIR, XPS, AFM, 

DLS, XRD, and UV-Visible spectroscopy are used to 

analyze characteristics like pore size, surface area, 

crystallinity, particle size, shape, and fractal 

dimensions [87, 88]. Scanning electron microscopy 

(SEM) is a technique used to study nanoparticles, 

providing detailed images of their surface 
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characteristics, morphology, and size. It can be 

combined with energy-dispersive X-ray spectroscopy 

(EDS) to investigate the elemental composition. 

Transmission electron microscopy (TEM) provides 

high-resolution images of nanoparticles, revealing their 

crystalline composition and lattice spacing. Fourier 

transform infrared spectroscopy (FTIR) reveals the 

combination of chemicals and functional groups on the 

nanoparticles' surface, while X-ray photoelectron 

spectroscopy (XPS) reveals the chemistry of 

nanoparticles' surfaces. Atomic force microscopy 

(AFM) evaluates the topography and surface 

characteristics of nanoparticles, while dynamic light 

scattering (DLS) determines size distribution in 

liquids. X-ray diffractrometry (XRD) ascertains the 

crystalline structure of nanoparticles [72,80,86,88]. 

 

Review of Nanotechnologies and Nanoparticles used 

for Environmental Applications  

Nanotechnology significantly impacts production 

techniques, replacing machinery, and reformulating 

components, reducing energy and material 

consumption, and reducing environmental harm. It 

provides innovative solutions to environmental 

contamination problems Figure 3[89]. 

 
Fig3- Environmental applications of nanotechnology and nanoparticles [89, 91] 

Nanomaterials offer numerous applications in various 

fields, including adsorption, sensors, membranes, and 

disinfectants. They have been synthesized into 

complex structures to enhance their adaptability. This 

paper emphasizes the benefits of nanotechnology in 

wastewater treatment systems, emphasizing the need 

for green, reliable, and economical environmental 

restoration procedures [90, 91]. 

 

Water pollution  

Water is a vital resource for the global economy, 

ecology, and health. However, a lack of clean water is 

causing issues like 1.2 billion people lacking access, 
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2.6 billion lacking basic hygiene, and millions of 

deaths from contaminated water. Population growth, 

pollution, flooding, and increasing demand for water 

strain human society. Water scarcity is a global issue 

due to population growth, excessive surface and 

groundwater use, and rising waste. To prevent future 

water stress, it is essential to control existing water 

supplies, particularly groundwater, which is the most 

crucial water resource.Worldwide, aquifers provide 

drinking water for over 2 billion people, according 

to United Nations Environment Programme (UNEP) 

research. Irrigated agriculture, which mostly uses 

groundwater, produces 40% of the world’s food [92-

95]. 

Wastewater  

Wastewater from industries like mining, electroplating, 

and battery manufacturing is contaminated and harmful 

to the environment and living things. The type of 

pollutants in industrial wastewater depends on 

production methods and can include organic chemical 

components, high salinity, hazardous heavy metals, 

high pH, and toxins. Wastewater composition varies 

and includes complex organic substances, inorganic 

compounds, and hazardous wastes. Nonhazardous 

wastes, such as organic waste, cardboard, plastic, iron, 

glass, and stone, pose no environmental or public 

health risks [96-99].Nanoscale science and engineering 

advancements are paving the way for innovative water 

purification systems that meet specific specifications 

[100]. Nano-science investigates molecular, atomic, 

and macromolecular interactions, focusing on 

nanotechnology. It involves creating, describing, and 

using nanostructured materials for adsorption, 

catalysts, and wastewater treatment, attracting attention 

in recent times[94]. Nanoparticles can effectively 

detoxify trichloroethene, a hazardous industrial 

effluent, making them ideal for hydro dehalogenation 

and reduction in various inorganic and organic 

groundwater contaminants [99]. Nanotechnology 

advancements offer affordable, effective treatment 

solutions, addressing current issues and demonstrating 

potential for expanding water supplies and creating 

future water supply systems [90].  

 

Adsorption  

Sorption is the process of a substance adhering to a 

surface, forming interactions between the sorbent and 

the sorbate. It can be physical, chemical, or 

electrostatic, depending on the interactions. Physical 

sorption involves weak physical contacts, while 

chemical sorption creates new chemical bonds. 

Electrostatic sorption involves electron exchange 

between the surface site and adsorbed molecules. 

Adsorption refers to the uptake of an adsorbate on solid 

surfaces [101-103].Nanoadsorbents offer significant 

advancements in water treatment due to their high 

adsorption kinetics, short intra-particle dissemination 

distance, high specific surface area, and adjustable 

pores. Their highly mobilized adsorption sites and 

large specific area make them effective. Current 

methods include metal-based, polymeric, carbon-

based, plant-based, and zeolites (Table5) [104,105]. 

 

Table 5 List of adsorbents used for the removal of pollutants removal 
Adsorbents Target pollutants Performance Adsorption 

isotherms 

Remarks Reference 

Titanate nanotube 
TNTs 

Pb (II), Cd(II), 
Cu(II), Cr(II) 

TNTs according to the 
order of - 

Cr3+(1.37 mmol/g) << 

Cu2+ (1.92 mmol/g) < 
Cd2+ (2.13 mmol/g) << 

Pb2+ (mmol/ g) 

-  Given its ability to efficiently 
absorb cations, TNTs are regarded 

as useful heavy metal adsorbents. 

Because of their high surface 
hydroxyl groups (OH) and low 

point of zero charge (pHPZC) 
through ion exchange 

[132] 

Magnetite Fe3O4 Cd(II), Zn(II), 

Pb(II), Cu(II) 

At pH 5.5, 95% of the 

metal ions were 

absorbed in around 30 
minutes 

Langmuir Throughout the four cycles. The 

adsorption capacity was nearly 

constant; however, as the 
concentration of coexisting ions 

(Na+, K+, or Mg2+)increased, Cu2+ 

adsorption capacity declined 

[133] 

NiO nanoparticles Cd(II) and Pb(II) The greatest adsorption 

capabilities for Pb(II) and 

Cd(II) ions were 625 
mg/g and 909 mg/g, 

respectively. 

Langmuir The adsorption was endothermic 

and spontaneous, occurring in 

response to boundary layer 
diffusion or external mass transfer. 

[134] 

Magnetite Iron 

oxide nanoparticle 
(MION-Tea) Fe3O4 

As(III) and As(V) High adsorption 

capacities for As(III) and 
As(V) at 188.69 and 

153.8 mg/g, 

respectively. 

Langmuir Thermodynamics shown that 

adsorption is endothermic. MION-
Tea can be recycled with NaOH 

and used again for up to five 

adsorption cycles. 

[135] 

Amorphous 

zirconium oxide 

(am-ZrO2) 

phosphate At pH 6.2, the 

adsorption capacity was 

approximately 99.01 

Langmuir The surface hydroxyl groups were 

crucial to the phosphate’s 

adsorption process. It would be 

[136] 
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mg/g. simple to generate am-ZrO2 
nanoparticles with 0.1 M NaOH 

Graphitized, 

carboxylized, and 

hydroxylized CNTs 

Ciprofloxacin 

pharmaceuticals 

- Freundlich and 

dubenin-

Astakhov 

Since MH and MC have different 

electron donor-acceptor 

interactions, sorption on MH was 
greater than on MC. 

[137] 

CNTs carboxylized 

with HNO3 

Epirubicin 

pharmaceuticals 

- Freundlich CNTs were able to create 

supramolecular complexes with 
EPI and beneficial loading 

properties as drug carriers by π-π 

stacking. 

[138] 

Nano ZnO Pb(II) Pd adsorption is nearly 
entirely present in nano 

ZnO at lower beginning 

Langmuir and 
Freundlich 

The powder had a surface area of 
80.425 m2g-1, which was higher 

than that of typical zinc oxide. 

[139] 

CNTs loaded with 
magnetite 

Methylene blue 
(MB) organic dyes 

- Langmuir The high adsorption capacity was 
caused by π-π stacking interactions 

and electrostatic attraction between 

(MB) and CNTs. 

[140] 

Sunflower straw Uranium 251.52 mg/g Langmuir 1000 mg/L initial concentration of 
uranium taken 

[141] 

 

Adsorption process 

Select high surface area Nanomaterials for adsorption, 

functionalizing or pre-treating to remove contaminants. 

Fill reactors with contaminated water, and the 

nanoparticles attract pollutants. Adsorption and 

desorption kinetics are influenced by temperature, 

contact duration, and initial pollutant concentration. 

Water is separated from nanoparticles using filtration 

or sedimentation, and desorption regenerates 

Nanomaterials. This is an example of a simplified 

schematic diagram Figure 4 that shows how 

Nanomaterials are used in the adsorption process to 

remove contamination from water[106-108]. 

 
Fig 4 – Nanoparticle used for the removal of pollutants from water by adsorption process [107] 

 

Membrane Process 
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Membranes are porous layers that allow water 

molecules to pass while obstructing metals, salts, 

bacteria, and viruses. They can be used electrically or 

pressure-driven for water purification. Membrane 

separation techniques are advanced for wastewater 

treatment [109,107].The membrane process is effective 

in water remediation due to its segregation, ease of use, 

and lack of secondary contamination. Common 

membrane materials include polymers like poly-

acrylonitrile (PAN), polyamide (PA), and cellulose 

acetate (CA). Membrane methods include 

microfiltration, ultrafiltration, nano-filtration, and 

ultrapure water production, desalination, and water 

reuse Figure 5 [110-112]. 

 

 
Fig 5 – Water purification process using different types of nano membranes [111, 113] 

 

Nanotechnology has developed novel water treatment 

membranes with high catalytic activity, transparency, 

and control over fouling. Mesoporous carbons in thin 

film polymeric matrices serve as nano-composite 

membranes, enhancing water permeability. Thin-film 

nano-composites with nano-NaX zeolite and 

polyamide are used for purifying water and allowing 

impurities to pass through, enhancing water quality 

[113-115]. 

 

Photo catalysis 

Advanced oxidation processes, such as photo-catalysis, 

are being explored as a sustainable and affordable 

solution for water treatment, aiming to reduce resistant 

organic pollutants and eliminate microorganisms. 

Photo-catalytic oxidation is a reaction involving 

chemicals, light, or energy, requiring the creation of 

reactive radicals like hydroxyl radicals and H2O2, O2, 

and O3. Homogenous photo-catalysis methods can be 

divided into photo-Fenton and Fenton reactions, with 

photo-Fenton having a 600 nm light wavelength and 

Fenton having no light exposure. Both techniques can 

be irradiated with solar or UV light, but require pH 

rectifications [116-120].Research groups are exploring 

the use of membrane photo-catalytic reactors to make 

water cleaner and retain catalytic particles. However, 

high-pressure pumps are expensive and energy 

inefficient. Coating techniques like vapor deposition 

and wet chemical coating can be used for immobilizing 

nanoparticles. TiO2 nanoparticles and silver-coated 
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antibacterial filters are promising options. Exposure to 

UV radiation activates electron-hole pairs, enhancing 

the biodegradability of decomposable materials [107, 

121, 122].  

 

Disinfection and Decontamination  

Disinfections in sewage water effectively inhibit 

microbial growth but can produce harmful disinfection 

byproducts (DBPs) with short half-life. Over 600 

DBPs have been identified worldwide, mostly 

carcinogenic. Technological innovation is needed to 

provide effective disinfection without DBPs. 

Nanomaterials like fullerenes, CNTs, nano-Ag, nano-

ZnO, and nano-TiO2 exhibit strong antibacterial 

qualities, making them a promising alternative to 

traditional disinfection techniques [123-

126].Nanotechnology advancements have sparked 

interest in researching antibacterial properties of 

Nanomaterials (NMs) for water disinfection. Solar 

light-emitted NMs show potential as substitutes or 

combined with photo-excitation technologies [127]. 

Nanoparticles like ZVIn and carbon-based 

nanomaterials like fullerene and CNTs exhibit high 

antibacterial activity without significant oxidation. 

These properties are initiated by contact with bacteria, 

with SWCNTs having the greatest antibacterial 

activity. Fullerene interaction requires immediate 

interaction [128-131]. 

 

Constraints and the Need for Research 

Nanotechnology-based water and wastewater treatment 

methods hold significant promise, but more research is 

needed to expand their commercialization and ensure 

safety and affordability. Long-term effectiveness of 

existing technologies is another area that requires 

further research. Adoption of novel technologies is 

influenced by affordability and associated hazards, 

with nanomaterials currently being relatively 

expensive. Reuse and regeneration of nanoparticles can 

lead to cost-effectiveness, but risk assessment and 

management are difficult due to their nanoscale nature. 

Researchers must be aware of potential risks associated 

with these substances while treating wastewater and 

water [122,142].    

 

Conclusion  

Human activity is disrupting the ecosystem by 

releasing toxic substances that contaminate land, 

atmosphere, and water, endangering public health. 

Water safety is crucial due to factors like population 

growth, droughts, and changing climate conditions. 

Nanomaterials are gaining popularity in water 

treatment and wastewater treatment. While our world 

is superior due to water, many parts of the world lack 

sufficient drinking water. Researchers and scientists 

need to develop new strategies to address these 

limitations. Nanotechnology has shown success in 

removing contaminants from water, managing 

challenges, and advancing certain areas. 

Nanostructured catalytic membranes and nanosorbents 

are effective, time-efficient, ecologically benign, and 

low energy consumption. However, these methods are 

currently not widely used due to their high cost. 

Nanomaterials exhibit efficiency due to their rapid 

reactivity. However, there are no automated digital 

monitoring techniques for assessing nanoparticle 

prevalence in water. Ultimately, nanotechnology will 

lead to dynamic and adaptable systems for detecting 

and tracking various toxins and hazardous chemicals in 

environmental media. 
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