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ABSTRACT:  

Immunomodulation is possible with the existence of mesenchymal stem cells and its regenerative potentiality. 

The interdisciplinary field of life sciences and engineering is renamed as Regenerative medicine. Several 

tissues and organs are lost during injury or disease, in such cases regenerative medicine plays a key role to 

restore the lost parts of organs and tissues as well as aid in the healing of wounds. The repair in tissues is 

possible with the introduction of Mesenchymal Stem cells (MSCs) exosomes which have triggered 

remodelling reactions.  The multivesicular body is surrounded by plasma membrane referred to as exosomes 

which are extracellular vesicles. These vesicles aid in intracellular communication, cell differentiation, 

immune signalling, angiogenesis and stress response. The productive biological properties of these exosomes 

include stability, less toxicity, biocompatibility with abundant complex molecules of enzymes, proteins, 

nucleic acids, transcription factors, cytokines and cell surface receptors. Exosomes are primes candidates for 

proficient exchange of cargos which promotes engineering of tissues and expected to solve main medical 

problems. Therefore, our article prime focus is to highlight on mechanism of actions of MSCs-exosomes and 

its clinical transformation in field of therapeutics. Further, have provided insights on its application for wide 

variety of diseases and limitations on using in relation with realistic instances. 

http://www.jchr.org/
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1. Introduction 

From decades study on exosomes in response to human 

health is in acceleration. The traditional method for In-

vitro evolution of living organisms along with the power 

of regulating expressions of genes is termed Exosomes 

(Exos). These exos act as biologically active molecules 

which can diffuse locally or pass-through blood vessels 

to remote organs/tissues to perform significant functions 

in the healing of human tissues (1-2). The pluripotent 

(MSCs) have the ability to differentiate into different 

lineages which further progress from mesoderm. Their 

in-vitro capability of differentiation is widely accepted 

entreaty in cell-based therapy since it has the potential to 

regenerate tissues (3). Contemporarily, the greater 

demands for the development of exosomes with relation 

to human health.  

Nonetheless, exosomes are naturally small sized particles 

in nano scale has several benefits in contrast to 

engineered nanoparticles (4-5). The heterogenous 

exosomes are extracellular vehicles (EVs) are naturally 

appearing nano to micro-sized membrane vesicles 

discharged from fundamentally various cell types. These, 

Extracellular vesicles are encircled by a lipid bilayer 

membrane and vary in size from 30 to 10,000 nm in 

diameter. Nevertheless, exosomes are materialized as a 

unique and significant trouper in intracellular & 

intercellular communication specifically for their 

capability in transferring their biological content, 

entailing of lipids, proteins, and nucleic acids to target 

cells (6-8). It is predominantly apparent that EVs display 

main role in the physiological regulation processes along 

with repair of damaged tissues (9-10) and sustenance of 

stem cell (11). In various pathological circumstances 

EVs played a key role in treatment of maladies like viral 

infections (12-13) cancer (14-16), and neurodegenerative 

disease (17).( figure-1). 

 

Figure-1: Mesenchymal Stem Cells (MSCs) are used 

to treat a wide range of disorders & can be isolated 

from many organs, tissues, and cells. 

In early 19th century Pan & Johnstone discovered 

exosomes, while Johnstone during examining the 

maturation mechanisms in sheep reticulocytes 

discovered exosomes (18–20). However, researchers 

investigated the bleb formation from endocytosis which 

fuses with lysosomes and results in formation of a micro-

vesicle, later termed as exosomes which contains 

proteins, lipids, and enzymes (21). (Shown in figure-2). 

Earlier it was assumed that exosomes are apoptotic 

bodies for disposal of cellular debris (22). There has been 

a lot of work done to better understand the functional 

biology of exosomes and to use them in clinical settings 

(23). The miraculous potential of exosomes which are 

obtained from donor cell and its sustenance in outer 

environment and growth In-vitro condition has proved to 

be promising therapeutic approach for various maladies 

such as cancer with tumor specific biomarkers (24), 

liposome mediated drug delivery in cardiovascular 

problems (25-28), MSCs in Orthopaedics (29-30), 

dentistry (31) and currently in treatment of COVID-19 

(32-34). SARS-COV2 malady outbreak created global 

pandemic situation from late 2019 and still today facing 

the critical situation.  

 

Our article provides broad insights on available 

exosomes and its applications in various diseases 

including COVID-19 and its treatment with 

Mesenchymal stem cells (MSCs) as an option since it 

possesses regenerative, immunomodulatory, antitumour, 

anti-inflammatory, along with antiviral actions 

Although, several advantages of these exosomes-based 

therapy but also have limitations which is been revealed 

in our article. Multidisciplinary research needs to carried 

out to exploit standard methods for isolation, storage, and 

increased secretion of exosomes in both donor as well as 

recipient for large scale valorization. With reference to 

current advancements and challenges, our review 

provides concise role of exosomes in different maladies 

and its treatment potentiality along with overview on role 

of exosomes in relation to their origin and functions are 

distinctively elaborated in our updated review. 

  

 

Figure-2: The internal contents of exosomes and 

outer membrane receptors  

http://www.jchr.org/
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2. Exosomes biogenesis 

Exosomes are created by the plasma membrane 

invaginating inward, which creates endosomal 

membrane. The plasma membrane, however, is where 

microvesicles first appear. (35). Early endosomes (EEs), 

which are formed by the fusion of endocytic vesicles, are 

the first stage of biogenesis (36). Later, formed EEs 

either return the cargo proteins outwards or packed into 

late endosomes (LEs) (37). Thus, the Endosomal-sorting 

complex required for transport (ESCRT) is dependent on 

the packing of proteins into multivesicular bodies and 

intraluminal vesicles (ILVs). Commonly 4 ESCRT 

complexes of protein such as ESCRT0, ESCRTI, 

ESCRTII, ESCRTIII along with AAA ATPase Vps4 

accessory protein complex which depends on ubiquitin 

protein for further mechanism or undergoes ubiquitin 

independent mechanism of action for selection of 

required cargo and formation of target exosomes (38-42). 

 

ESCRT-0, the complex's initial component, is a 

heterodimer comprised of STAM1/2 and HRS, both of 

which can detect cargo that has been ubiquitylated (43, 

44). The cytoplasmic protein HRS, the central 

RR/KHHCR, the N-terminal WxxD, and early endosome 

antigen 1 (EEA1), which aids in the formation of 

endosomes, are all found in the FYVE domain. The 

phosphatidylinositol 3-phosphate (PtdIns-3) that is 

created by these components (45–46) binds to the 

phosphatidylinositol 3-phosphate (PtdIns3P), a lipid that 

is present in large amounts on the surface of pre-MVB 

endosomes (47). Then, HRS recruits clathrin (48), aiding 

in the corralling and clustering of ubiquitylated cargo 

(49–50). Together with ESCRT-I and ESCRT-II, which 

also contain ubiquitin-interaction domains, ESCRT-0 

works at the site of ILV formation to create a sorting 

domain with a high affinity for ubiquitylated cargo (51–

52). ESCRT-III is simultaneously recruited, which 

encourages membrane deformation and tightens the neck 

of the ensuing invagination (53-57). The ESCRT 

complex is deconstructed by the ATPase VPS4 and its 

co-factor VTA1 (59) after ubiquitin has been removed 

from the cargo by de-ubiquitylating enzymes (DUBs) 

(58), allowing the recycling of its component parts. 

Theoretically, blocking any of these elements should 

stop the formation of exosomes that are dependent on 

ESCRT, but not without interfering with additional steps 

such as lysosomal targeting (60).(Shown in figure-3) 

 

Figure-3: Ubiquitin dependent sorting of ESCRT 

complex proteins machinery results in formation of 

Exosomes  

3. MSCs derived Exosomes formation and its 

potential function 

In accordance to the exosome formation which mainly 

depends on the size, shape, markers, origin and based on 

it extracellularlly are classified into 1) microvesicles, 2) 

Apoptotic bodies 3) Membrane fragments and 4) 

Exosomes. The extracellular vesicles are also termed as 

microvesicles which approximately about 20 to 1000nm 

and mainly involved in budding of plasma membrane. 

Whereas apoptotic bodies about 1000-5000nm in 

diameter and release the engulfed materials as apoptotic 

cells to exterior. However, membrane fragments formed 

from epithelial cell membrane are grossly 50-80nm with 

CD-133 marker. Moreover, fusion of multivesicular 

bodies results in formation of exosomes which are 

approximately 40-100nm in size and mainly produced 

through endosomal alleyway. (61-69) 

Numerous disorders, including cancer, cardiovascular 

disease, and neurological disease, have been related to 

the growth of exosomes. Exosomes are involved in a 

number of physiological processes, such as the 

presentation of antigens, RNA transfer, and tissue 

healing. (70–75). According to data from past studies, 

exosomes have specialised roles and significant 

involvement in coagulation, intercellular 

communication, and waste product control. Their roles 

include regulating the immune system, stimulating 

vascular regeneration, mediating cell proliferation, 

migration, apoptosis, and differentiation. They aid in 

sustaining the physiological state of the organism, and 

contribute to disease advancements (76). 

 

4. Tissue engineering & regenerative therapy 

 

The Food and Drug Administration (FDA) has approved 

biologics products depicted in Table-1. The tissue 

engineering & regenerative therapy has developed in 

industry from two decades ago and further clearance or 

approval. For therapy either autologous /allogeneic or 

differentiated cells with significant proliferative potential 

http://www.jchr.org/
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is used (77-78).  The first biologic in orthopaedic 

medicine to receive FDA approval for the treatment of 

localised articular cartilage abnormalities is Carticel. 

However, autologous chondrocytes from articular 

cartilage were extracted, grown ex vivo, and then 

implanted at the damage site, which led to a strong 

repossession. (79). Several components used in current 

regenerative medicine which mimics the native tissues of 

extracellular matix (ECM) and signals the growth cells 

for altered behaviour as well as differentiation (80). 

(figure-4) 

 

 

 

 

                                                       

       

 

                                                              

 

 

 

 

 

 

Figure-4: Isolation of Mesenchymal Stem Cells 

(MSCs-EV) for Application in Regenerative Medicine 

and Tissue engineering. 

Extracellular vesicles and microvesicles are both 

heterogeneous lipid bilayers that are surrounded by 

vesicles released by different cell types, including MSCs. 

Additionally, MSCs can serve as intermediaries for 

cellular communication. The significant involvement of 

EVs includes physiological and pathological, as well as 

different biological processes participating in modulating 

immune responses, coagulation, maintaining 

homeostasis, angiogenesis, tumour growth, and 

inflammation (81–84). But small EVs, medium EVs, and 

large EVs are categorised in accordance with their size, 

shape, and place of origin (85–86). The release of 

extracellular vehicles (EVs), as opposed to cellular 

engraftment and subsequent reaction on the damaged 

site, provides evidence that MSCs have beneficial effects 

that are attributed to their paracrine function. (87–90). In 

addition, MSCs mainly involves in procedures such as 

isolation, purification of MSC-EVs (91). Additionally, 

the released MSCs -EV used for regenerative therapy has 

indicated potential biological effects. This is because 

MSCs frequently need to be cultivated in vitro and the 

final product is released after purification (92–93). 

 

Table-1: FDA Approved Biologics for Tissue 

regenerative medicine 

Name Catego

ry 

Biologic 

activity 

FDA 

Approved 

GINTUI

T, 

Apligraf 

 

 

 

 

 

 

Biologi

cs 

fibroblasts 

in bovine 

collagen 

and 

Allogenic 

cultured 

keratinocyt

es 

Diabetic 

foot ulcers, 

leg, topical 

mucogingi

val 

condition 

laViv Autologou

s 

fibroblasts 

refining 

nasolabial 

crinkle 

appearance 

Carticel Autologou

s 

chondrocyt

es 

Defects in 

Cartilage 

arising 

from 

acute/repet

itive 

damage 

Cord 

blood 

Progenitor 

cells & 

Hematopoi

etic stem 

cells 

 

Immunolo

gical & 

Hematopoi

etic 

rebuilding  

after 

myeloablat

ive therapy 

Osteogen

ic 

protein-1 

 

 

 

 

Biopha

rmaceu

ticals 

BMP-7 Tibia non-

union 

Infuse 

bone 

graft, 

BMP-2 lower 

spine 

fusion, 

Tibia 

fracture & 

non-union 

Isolation of Mesenchymal Stem Cells 

(MSCs) and Application in tissue 

engineering and regeneration 

MSCs 

MSCs-EV 

Isolation 

Lungs 

Dental 

pulp 

Brain 

Heart 
    Nerve cell 

Liver 

http://www.jchr.org/
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Regranex PDGF-BB Diabetic 

ulcers-

lower 

extremity 

GEM 

125 

tricalcium 

phosphate, 

PDGF-BB 

Defects in 

Periodonta

l 

Dermagr

aft 

 

Cell-

based 

medical 

devices 

Allogenic 

fibroblasts 

Diabetic 

foot ulcer 

Celution Cell 

extraction 

Transfer of 

autologous 

adipose 

stem cells 

 

5. Preclinical and clinical stages of 

Investigation 

Wide range of approaches at both the preclinical and 

clinical stages of examination are at present reconnoitred. 

The studies on regenerative medicine are broadly divided 

into three subsections (i) reiterating the structure of organ 

and tissue through scaffold fabrication (ii) 3D bioprinting 

and self-assembly (iii) Association of graft with the host 

through vascularization and excitation  (iv) modifying 

the host environment to instigate regenerative potential 

specifically through altering immune response. Table-2 

depicts the methods employed currently for recognition 

and identification from different cell sources for 

regenerative therapy. 

 

Table-2: Depicts the different cell sources and 

secreted factors revealing therapeutic effect 

 

Source Speci

es 

Secrete

d 

factor 

Disea

se/Le

sion 

Effect Referenc

es 

Adipos

e tissue 

 

 

Equin

e 

Tissue 

vascula

rization 

Tendi

nopat

hy 

enhanced 

tendon 

healing,  

Instigate 

tendon 

fiber 

organizatio

n, 

dwindled 

inflammat

ory 

infiltration, 

enhanced 

type I 

collagen 

formation 

(94-95) 

Adipos

e tissue 

 

 

 

Canin

e 

orientat

ion of 

the 

myofib

ers 

Semi-

tendi

nous 

muscl

e 

lesion 

Enhanced 

lameness 

(96) 

Adipos

e tissue 

Insulin 

growth 

factor-I 

(IGF-I)  

Fragme

nts of 

bone 

and 

cartilag

e 

degen

erativ

e joint 

diseas

e 

(DJD

)/ 

Osteo

arthrit

is 

steroidal or 

non-

steroidal 

anti-

inflammat

ory drugs 

(NSAID) 

Platelet-

rich 

plasma, or 

stem cells, 

are able to 

mend 

damaged 

tissue and 

reduce 

inflammati

on. 

(97) 

Bone 

Marro

w 

 

 

 

 

Muri

ne 

MIG, 

VEGF, 

MIP-

1α, 

MCP-1 

Ische

mia 

Decreased 

caspase-3 

activity, 

Angiogene

sis  

Promotion 

(98) 

Bone 

Marro

w 

SDF-1 Bronc

hopul

mona

ry 

dyspl

asia 

Angiogene

sis, 

increased 

alveolariza

tion, 

macrophag

e 

Infiltration, 

diminished 

alveolar 

space 

(99) 

 

6. New cell sources for regenerative medicine 

 

In regenerative medicine the main stratagem particularly 

used is sample cell source. Nonetheless, it is difficult to 

recognize and derive adequate numbers of therapeutic 

cells. Stem cells, progenitor cells can be derived from 

both adult as well as embryonic tissues. However, earlier 

studies have broadly explored regenerative medicine and 

used adult tissue-derived cells clinically due to their 

ready availability along with safety. Most of the adult 

tissue derived cells are utilized clinically and are FDA-

approved in regenerative medicine therapies till date. 

http://www.jchr.org/
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7. Delivery methods for exosomes 

The various cutting-edge methods for getting exosomes 

to their sites of action, as well as their drawbacks and 

difficulties, were examined and presented. Despite the 

fact that this approach has a rapid liver and renal 

clearance, intravenous administration (IV) is the most 

popular (100). This approach was frequently employed 

for ailments including cardiovascular, neoplastic, and 

orthopaedic diseases (101). The subcutaneous (SC) route 

has been employed mostly in aesthetic and cosmetic 

reasons, while intramuscular (IM) has been used 

primarily in neuromuscular and musculoskeletal 

problems. In neurological diseases such Alzheimer's, 

Parkinson's, and Creutzfeldt-Jakob disease, intrathecal 

administration is preferable (102-103). In order to treat 

wounds and ulcers, local aerosol sprays are used (104). 

This is the recommended path for hair development and 

regeneration in age-related therapies (105-106). 

Exosomal therapy has been studied in interesting detail 

as a potential therapeutic option for the coronavirus 

disease-2019 (COVID-19) pandemic (107). 

 

8. Advantages and challenges of MSCs derived 

Exosomes 

• Several investigations have shown that 

embryonic stem cell-derived EVs perform the same tasks 

as parent cells.  

• The immune rejection in cell transplantation, 

stress reactions caused by necrosis or abnormal 

differentiation are avoided by Exosome-based therapies  

• The chief advantages of exosomes is that they 

are mediators of stem cell paracrine activity and transmit 

information to neighbouring cells for treatment of 

disease. 

• The exosomes can be amalgamated with 

existing/newly developed approaches with specific 

ingredients. 

• Tissue engineering and regenerative exosomes 

can be loaded into drug carriers to treat lesion tissue. 

• Today, MSCs-derived exosomes are considered 

to be effective in comparison to cell therapy. 

 

9. Challenges/Disadvantages 

 

• Before use, it is important to thoroughly 

research their origins and how they interact with nearby 

cells. 

• The variability of MSC-exosomes is the most 

challenging issue. 

• Further, it is difficult to purify EV population.  

• • The International Society for Extracellular 

Vesicles (ISEV) advises having a thorough 

understanding of the biogenesis pathway. 

• In addition, basic information on biochemical 

composition, size and cell origin should be provided for 

In vitro and In vivo functional assays. 

 

10. Conclusive Remarks 

 

The mesenchymal stem cells derived exosomes are 

paving new roads for tissue engineering and future 

regenerative medicine which robustly evolving to 

become a reality for therapeutic use in patients. The wide 

composition of exosomes includes growth factors, 

miRNA and several proteins to fight against diseases. 

Further, clinical trials need to be carried out for stem cell 

derived exosomes release for clinical application. 

Although, various literature reports have revealed the 

exosomal usage in healing of wide variety of maladies 

such as regeneration of skin, wound healing but the exact 

mode of action and role of exosomes need to be explored 

more. Nonetheless, for better comprehension on 

exosomes need to explore on area of mechanism of 

action, trafficking of exosomes and cellular uptake. 

Furthermore, challenge’s part on exosomes must be 

concentrated for enhancing its future therapeutic use. 

Thus, it is significant that isolation, optimization, 

purification and quality control are highly promising in 

tissue engineering and regenerative medicine before 

clinical use. 
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