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ABSTRACT:  

In this research, we use the SIR (Susceptible, Infectious, and Recovered) model framework to 

mathematically simulate the spread of Corona virus Disease (COVID-19) in India. The effect of delay is 

accounted for by include a Hopf bifurcation parameter, and the research is limited to two states in India: 

Telangana and Andhra Pradesh. Local asymptotic stability of both the disease-free and epidemic equilibria is 

investigated. The ODE model indicates that the fundamental reproduction number R0 is tightly influenced 

by the dynamics. In circumstances where R0 is smaller than 1, the disease-free equilibrium is judged stable, 

leading to the extinction of the illness. When R0 is greater than 1, on the other hand, a special endemic 

equilibrium develops. The purpose of this article is to provide an initial value estimate for the COVID-19 

pandemic in India using actual data. This particular SIR model for COVID-19 is one among several 

pandemic models currently under examination in India. Furthermore, the COVID-19 SIR model presented in 

this paper is applicable with or without time delay. Theoretical findings are substantiated through numerical 

experiments to enhance comprehension of the model's dynamics. 

 

1. Introduction 

The field of epidemiology has become more important 

in modern times. The SIR model, created in the early 

20th century by Ronald Ross, William Hamer, and 

others, is based on a set of three coupled non-linear 

ordinary differential equations. Kermack and 

McKendrinck did some of the first theoretical work on 

infectious illness models between 1927 and 1933 [1].On 

March 11, 2020, the World Health Organization (WHO) 

declared a pandemic on account of the new Coronavirus 

Disease-2019 (COVID-19), which emerged at the end 

of 2019 in Wuhan, China and rapidly spread across 

continents. On January 30, 2020 [2], The Thrissur 

district of Kerala was the site of the first confirmed case 

of the pandemic in India. Following the work of G. 

Ranjith Kumar, K. Lakshmi Narayan, and B. Ravindra 

Reddy [3], this investigation examines the stability and 

Hopf bifurcation analysis of the SIR epidemic model 

with time delay. Other relevant research includes 

dynamics of a SIR Epidemic Model with a saturated 

incidence rate under stochastic influence [4], 

mathematical modeling of infectious diseases [5], a 

time delay epidemic model for COVID-19 [6], 

modeling the spread of COVID-19 [7], transmission 

dynamics of the COVID-19 outbreak and government 

intervention effectiveness [8], estimation of the final 

size of the COVID-19 epidemic [9], stability analysis of 

an epidemic model with infected immigrants and 

optimal vaccination [10], dynamics of a SI model with 

time delay and diffusion [11], compartmental models in 

epidemiology [12], epidemiological modeling of online 

social network dynamics [13], perspectives on the basic 

reproductive ratio [14], computation of threshold 

conditions for epidemiological models and global 

stability of the disease-free equilibrium [15], a 

geometric approach to global stability problems [16], 

global stability of SEIR models in epidemiology [17], 

evaluation of mathematical models for the COVID-19 

outbreak [18], a brief history of R0 and its calculation 

[19], study of the simple SIR epidemic model [20], and 

a study on COVID-19 transmission dynamics with 

stability analysis of the SEIR model and Hopf 

bifurcation for the effect of time delay [21].The 

dynamics of the COVID-19 epidemic in India are the 
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major subject of this article. Telangana and Andhra 

Pradesh are modeled mathematically because of the 

large differences in their epidemic patterns. The 

situation in these states is analyzed using the SIR 

model, and the findings are compared. Parameters are 

calculated from real-time data gathered every 15 days 

from April to September of 2020, and these estimates 

are utilized in MATLAB simulations. 

2. Mathematical Model 

To better understand and foretell the spread of an 

epidemic, we detail the mechanistic transmission model 

below. This approach depends on segmenting the 

population into three well defined subsets, each 

representing a different infectiousness condition. As a 

result, people are divided into three categories: 

"susceptible," "infected," and "recovering." 

The foundational assumption of the model is that the 

overall population size remains constant over time, 

signifying that there is no fluctuation in the total 

population size. “In other words, 

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
= 0 

 

So, the SIR model, including births and deaths, can be 

defined as 

 
𝑑𝑆

𝑑𝑡
 = A -𝛽 𝑆𝐼 − 𝛼𝑆 

𝑑𝐼

𝑑𝑡
 = 𝛽 𝑆𝐼 − 𝛾𝐼 − 𝛼𝐼  (1) 

𝑑𝑅

𝑑𝑡
 = 𝛾𝐼 − 𝛼𝑅 

With initial conditions S (0) ≥ 0, I (0) ≥ 0 and R (0) ≥ 0 

Where S (t) and I (t) represent the number of 

susceptible and infected populations, respectively. 

𝛽 - represents the rate of transmission, 

𝛼 - represents the death Coefficient of I,  

A - represents the birth rate of people, 

𝛾 - represents the recovery rate. 

3. Equilibruim Analysis 

There are two equilibria for system (1). 

(i)      COVID-19 Disease-Free Equilibrium  

          E0 = (
𝐴

𝛼
 ,0 )  

(ii)  COVID-19 Endemic Equilibrium  

   E1= (
𝛾+𝛼

𝛽
 ,

𝐴𝛽− 𝛼(𝛼+𝛾)

𝛽 ( 𝛼+𝛾)
)  

The basic reproduction number for the model is 

 R0 = 
𝐴𝛽

𝛼(𝛼+𝛾)
   (2) 

4. Local Stability Analysis 

In this section, we shall investigate the stability analysis 

of disease-free equilibrium E0 and epidemic equilibrium 

E1. The Jacobian matrix of system (1) 

J = [
−𝛽𝐼 − 𝛼 −𝛽𝑆

𝛽𝐼 𝛽𝑆 − 𝛾 − 𝛼
]  (3) 

4.1 Stability of COVID-19 disease-free equilibrium 

Theorem: The disease-free equilibrium is locally 

asymptotically stable if R0 < 1 and unstable if R0 > 1. 

Proof: For the disease-free equilibrium at the point E0, 

the system (3) reduces to  

J = [
−𝛼 − 𝜆 −𝛽𝑆

0 −𝛽𝑆 − 𝛾 − 𝛼 − 𝜆
]  (4) 

With characteristic equation 

(-𝛼 − 𝜆) (𝛽𝑆 − 𝛾 − 𝛼 − 𝜆 ) = 0  

The characteristic roots are given by  

𝝀1= -𝛼 , 𝝀 2 = 
𝛽𝐴

𝛼
 (𝛾 + 𝛼) then the system is stable if   

𝛽𝐴

𝛼
 < (𝛾 +  𝛼) i.e., R0 < 1. 

Hence the given system is stable if R0 < 1 and unstable 

if R0 >1. 

4.2 Stability of COVID-19 Endemic Equilibrium  

For the Endemic Equilibrium E1 the system (3) reduces 

to 

J = [
𝛽𝐼 − 𝛼 −𝛽𝑆

𝛽𝐼 0
]                                                    (5) 

With characteristic equation  

𝝀2 + P1𝝀 + P2 = 0 

 Where P1 = (- 𝛽𝐼 − 𝛼), P2 = 𝛽2 𝑆𝐼 

𝑇𝑟  (𝐽) =  −𝛽𝐼 − 𝛼 
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                    = −(𝛽𝐼 + 𝛼) < 0          when I * > 0, R0 > 1 

            Det (J) = 𝛽2 𝑆𝐼 > 0 R0 > 1 is unstable. 

5. Delayed SIR model 

This part of the paper is devoted to constructing the 

dynamical model for our proposed problem. The 

disease is assumes to have an incubation period of the 

virus 𝜏 > 0. The incubation period represents the delay 

time from exposure to the development of symptoms of 

the virus. The bilinear transmission incidence will be a 

function of (t – 𝜏). The process dynamics model can be 

described as  

𝑑𝑆

𝑑𝑡
= 𝐴 −  𝛽𝑆(𝑡 − 𝜏) 𝐼(𝑡 − 𝜏) − 𝛼𝑆  

𝑑𝐼

𝑑𝑡
= 𝛽𝑆(𝑡 − 𝜏) 𝐼(𝑡 − 𝜏) − 𝛾𝐼 − 𝛼𝐼  (6) 

6. 6. LOCAL STABILITY ANALYSIS 

In this section, we shall investigate the stability analysis 

of disease-free equilibrium E0 and endemic equilibrium 

E1 

The Jacobian matrix of system (6)  

J = [
−𝛽𝐼𝑒−𝜆𝜏 − 𝛼 −𝛽𝑆𝑒−𝜆𝜏

−𝛽𝐼 𝑒−𝜆𝛾 𝛽𝑆𝑒−𝜆𝛾 − 𝛾 − 𝛼
]  (7) 

6.1 Stability of COVID-19 disease-free equilibrium 

Theorem: The disease-free equilibrium is locally 

asymptotically stable if R0 <1 and unstable if R0 >1 

Proof : For the disease-free equilibrium at the point E0 , 

the system (7) reduces to  

 J = [
−𝛼 − 𝜆 −𝛽𝑆𝑒−𝜆𝜏

0 𝛽𝑆𝑒−𝜆𝜏 − 𝛾 − 𝛼 − 𝜆
]  (8) 

With characteristic equation  

(𝛼 − 𝝀) (𝛽𝑆𝑒−𝜆𝜏 − 𝛾 − 𝛼) − 𝜆 = 0 

The characteristic roots are given by 

 𝝀 1 = −𝛼 , 𝝀 2 = 𝛽𝑆 𝑒−𝜆𝜏 −  𝛾 + 𝛼 

 Then the system is stable if 
𝛽𝐴 

𝛼
 𝑒−𝜆𝜏 < (𝛾 + 𝛼) 

 
𝛽𝐴 

𝛼
 < (𝛾 + 𝛼) 

 
𝛽𝐴 

𝛼 (𝛼+𝛾)
< 1 

 R0 < 1 

Hence the given system is stable if R0< 1 and unstable if 

R0 >1. 

6.2 Stability of COVID-19 Endemic Equilibrium 

In COVID-19 infection, the effects of time delay 𝜏 is a 

bifurcation parameter and it goes through a stationary 

values. The COVID-19 equilibrium occurs through 

direct stability and hopf bifurcation. For the endemic 

equilibrium E1 the system (7) reduce to  

J = [
−𝛽𝐼𝑒−𝜆𝜏 − 𝛼 − 𝜆 −𝛽𝑆𝑒−𝜆𝜏

𝛽𝐼 𝑒−𝜆𝜏 𝛽𝑆𝑒−𝜆𝜏 − 𝛾 − 𝛼 − 𝜆
]         (9) 

The characteristic equation of (9) for the endemic 

equilibrium is 

𝝀 2 + x1𝝀 + x2 + 𝑒−𝜆𝜏  (𝑥3 𝜆 + 𝑥4 ) = 0   (10)  

Where x1 = 2𝛼 + 𝛾 , x2 = 𝛾𝛼 + 𝛼2   

 x2 = 𝛽 𝐼 − 𝛽𝑆, x4 = 𝛾𝛽𝐼 −  𝛼𝛽𝐼 − 𝛽𝑆𝛼  

we need to find the necessary and sufficient condition 

for every root of the characteristic equation (10) 

Case 1: If 𝜏 = 0 equation (10) becomes  

𝝀 2 + (x1+ x3 ) 𝝀 + (𝑥3 + 𝑥4 ) = 0  (11)  

By Routh-Hurwitz criteria, all roots of (11) are real and 

negative, or complex conjugate with the negative real 

part of 

x1 + x3 > 0 & x2 + x4 > 0 

Hence, the system (6) without delay is locally 

asymptotically stable when R0 > 1. 

Case 2: If 𝜏 > 0 

put 𝝀 = 𝜔 𝑖 in (10), we get 

(𝜔2 +  𝑥2 +  𝑥4 cos 𝜔𝑡 +  𝜔𝑥3 sin 𝜔𝑡) + 𝑖 (𝑥1 𝜔 +

 𝑥1𝜔 cos 𝜔𝑡 −  𝑥4 sin 𝜔𝑡) = 0  (12) 

Separating the real and imagine 

𝜔2 − 𝑥2 = 𝑥3 𝜔 sin 𝜔𝑡 + 𝑥4 cos 𝜔𝑡  

-x1𝜔 =  − x4 sinωt + x3ω cosωt  (13) 

Which is equivalent to 

ω4 + ω2(x1
2 – 2x2 – x3

2) + (x2
2 – x4

2) = 0  (14)  

Thus if x1
2 – 2x2 – x3

2 > 0, x2
2 – x4

2 > 0 

Then, there is no ω such that iω is an Eigen value of the 

characteristic equation (10) 
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i.e., 𝝀 will never be a purely imaginary root of equation 

(10). Thus, the real part of all the Eigen value of 

equation (10) is negative for all 𝜏 ≥ 0. 

Hence, the endemic equilibrium is asymptotically stable 

for all 𝜏. 

If the following conditions hold: 

(i) R0 > 1 

(ii) (x1 + x2 ) > 0, (x3 + x4) > 0 

(iii) x1
2 -2x2 – x3

2 > 0 , x2
2 – x4

2 > 0  (15) 

If any one of x1
2 -2x2 – x3

2, x2
2 – x4

2 is negative. There 

is a unique positive ω0 satisfying (14). That is, there is a 

single pair of purely imaginary roots ± ω i to (10)  

From (13) 𝜏k corresponding to ω0 can be obtained  

△ = |
𝑥3 𝜔 𝑥4

−𝑥4 𝑥3 𝜔
| = x3

2 ω2 + x4
2 

cos 𝜔0 𝜏𝑘  = 
1

△
 |

𝜔2 − 𝑥2 𝑥3

−𝑥1 𝜔 −𝑥4
| 

 = 
1

 △
 (x2 x4 – ω2 x4+ x1 x3ω

2) 

𝜏𝑘 = 
1

𝜔0
 cos-1 [

(𝑥4−𝑥1 𝑥3)𝜔2−𝑥2 𝑥4

𝑥3
2 𝜔2+ 𝑥4

2 ] + 
 2𝑛𝜋

𝜔0
  (16) 

For 𝜏 = 0, E1 is stable, it remains stable for  

𝜏 < 𝜏0 if |
𝑑 𝑅𝑒 (𝜆)

𝑑𝑡
|
𝜆=𝑖𝜔0 

> 0 

Differentiating (10) with respect 𝜏, we get   

𝑑𝜆

𝑑𝜏
 [2𝜆 + 𝑥1 +  𝑥3 𝑒−𝜆𝜏 − 𝜏𝑒−𝜆𝜏 (𝑥3 𝜆 + 𝑥4)] =

 𝝀𝒆−𝝀𝝉 (𝒙𝟑𝝀 + 𝒙𝟒)                                                          (17) 

 [
𝑑𝜆

𝑑𝜏
 ]

−1

 = [
2𝜆 + 𝑥1 +  𝑥3 𝑒−𝜆𝜏 − 𝜏𝑒−𝜆𝜏  (𝑥3 𝜆 + 𝑥4)

𝝀 (𝒙𝟑𝝀 + 𝒙𝟒)𝒆−𝝀𝝉
] 

 [
𝑑𝜆

𝑑𝜏
 ]

−1

=
2𝜆+𝑥1

𝝀 (𝒙𝟑𝝀+𝒙𝟒)𝒆−𝝀𝝉 +
𝑥3

𝜆(𝑥3 𝜆+𝑥4)
−  

𝜏

𝜆
  

 =
(2𝜆+𝑥1) 𝒆−𝝀𝝉

𝝀 (𝒙𝟑𝝀+𝒙𝟒)
+

𝑥3

𝜆(𝑥3 𝜆+𝑥4)
−  

𝜏

𝜆
  

 [
𝑑𝜆

𝑑𝜏
 ]

−1

=
2𝜆 + 𝑥1

−𝝀 (𝝀𝟐 + 𝒙𝟏 𝝀 +  𝒙𝟐 )
+

𝑥3

𝜆(𝑥3 𝜆 + 𝑥4)
−  

𝜏

𝜆
 

 |
𝑑 𝑅𝑒 (𝜆)

𝑑𝑡
|
𝜆=𝑖𝜔0 

 =  |𝑅𝑒 (
𝑑𝜆

𝑑𝜏
)|

𝜆=𝑖𝜔0 

 

 =  𝑅𝑒 [
2𝑖𝜔0 + 𝑥1

−𝑖𝜔0(−𝜔0
2+𝑥1𝑖 𝜔0+𝑥2)

+
𝑥3

𝑖𝜔0(𝑥3 𝑖𝜔0+𝑥4)
−  

𝜏

𝑖𝜔0
]  

  =  𝑅𝑒 [ 
1

𝜔0
 (

2𝑖𝜔0 + 𝑥1

𝑥1 𝜔0+(𝜔0
2−𝑥2)𝑖

+
𝑥3

(−𝑥3 𝜔0+𝑥4 𝑖)
−  𝑖𝜏)]  

 =  
1

𝜔0
[

2𝜔0(𝜔0
2− 𝑥2 )+𝑥1

2𝜔0

𝑥1
2𝜔0+(𝜔0

2−𝑥2)2 −
𝑥3

2

(𝑥3
2 𝜔0

2+𝑥4
2)

 ]  

 = 
2𝜔0

2+ (𝑥1
2−2 𝑥2 −𝑥3

2)

(𝑥3
2𝜔0

2 + 𝑥4
2)

 

Under the condition x1
2 -2x2 – x3

2 > 0 

We have |
𝑑 𝑅𝑒 (𝜆)

𝑑𝑡
|
𝜆=𝑖𝜔0 

> 0 

Therefore, the transversality condition holds, and Hopf 

bifurcation occurs at 𝜔 = 𝜔0 , 𝜏 = 𝜏0 

7. Numerical Simulation 

Simulation for the dynamical system of the classical 

SIR model (1) and the time delayed SIR model (6) is 

compared to real data collected by the official website 

of PRS (Parliament and State) Legislative Research 

[18]. COVID-19 data was collected every 15 days from 

April to September for the year 2020. The COVID-19 

has unspecified parameter values for the real-time data 

of the SIR model. The pandemic in India should be 

determined by these model values. COVID-19 data are 

therefore important in developing and validating the 

non-linear ODE. Let us consider the parameters A = 90, 

𝛼 = 0.000001, 𝛽 = 0.000002, 𝛾 = 0.00001. 

In that event (14) has no positive roots, at that point, 

COVID-19 infectious equilibrium is locally asymptotic 

stable. On the off chance that R0 = 16363636.3671, at 

that point the COVID-19 disease equilibrium E1 = (5.5, 

8181817.682) has positive real roots and others have 

negative real roots. It is not hard to evaluate the 

bifurcation stationary value to be 𝜏 = 0”. 

In figure1, we compared COVID-19 real-infected cases 

and estimation values without time delay, when 𝜏 = 0 in 

Telangana state. 

In figure 2, we compared COVID-19 real-infected cases 

and estimation values without time delay, when 𝜏 = 0 in 

Andhra Pradesh state. 

In figure 3, we compared COVID-19 real-infected cases 

and estimation values without time delay, when 𝜏 = 0 of 

Telangana and Andhra Pradesh states. 

In figure 4, we compared COVID-19 real-infected cases 

and estimation cases with time delay, when 𝜏 = 0.2 of 

Telangana and Andhra Pradesh states. 

http://www.jchr.org/


Journal of Chemical Health Risks 

www.jchr.org 

JCHR (2023) 13(4), 2200-2205 | ISSN:2251-6727 

  

 

2204 

In figure 5, we compared COVID-19 real-infected cases 

and estimation cases with time delay, when 𝜏 = 0.9 of 

Telangana and Andhra Pradesh states. 

 

Figure 1. the time series of the system (6) is asymptotic 

stable when 𝜏 = 0 and the real-time data of Telangana 

with the parameter values A = 90, 𝛼 = 0.000001, 𝛽 = 

0.000002, 𝛾 = 0.00001. 

 

Figure 2. the time series of the system (6) is asymptotic 

stable when 𝜏 = 0 and the real-time data of Andhra 

Pradesh with the parameter values A = 90, 𝛼 = 

0.000001, 𝛽 = 0.000002, 𝛾 = 0.00001. 

 
Figure 3, the time series of the system (6) is asymptotic 

stable when 𝜏 = 0 and the real-time data of both 

Telangana and Andhra Pradesh with the parameter 

values A = 90, 𝛼 = 0.000001, 𝛽 = 0.000002, 𝛾 = 

0.00001. 

 

Figure 4, the time series of the system (6) is asymptotic 

stable when 𝜏 = 0.2 and the real-time data of both 

Telangana and Andhra Pradesh with the parameter 

values A = 90, 𝛼 = 0.000001, 𝛽 = 0.000002, 𝛾 = 

0.00001. 

 
Figure: 5, the time series of the system (6) asymptotic 

stable when 𝜏 = 0.9 and real time data of both 

Telangana and Andhra Pradesh with the parameter 

values A = 90, 𝛼 = 0.000001, 𝛽 = 0.000002, 𝛾 = 

0.00001. 

8. Conclusion 

In this manuscript, we have examined an SIR model for 

COVID-19 infection that incorporates a time delay. We 

analyze the model's global dynamic behavior and 

determine the system's threshold value, R0. 

Asymptotically stable is the equilibrium E0, where no 

diseases exist, where R0 is smaller than 1. The stability 

of the resulting linearized system is guaranteed by the 

absence of real positive roots in equation (6). When 𝜏 = 

0, the polynomial equation (15) has a single real 

positive root, suggesting that the equilibrium of 

infection with COVID-19 is stable. Conversely, when 𝜏 

= 0, the equilibrium solution becomes unstable, leading 

to Hopf bifurcation. Our theoretical findings are further 

supported by numerical simulations. From Figure -3, we 

observed that the Andhra Pradesh state estimation 
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values are nearly equal to the real infected cases. In 

figures 4 and 5 we observed different functional 

responses and added new compartments of 𝜏 = 0.2 𝑎𝑛𝑑 

𝜏 = 0. 9 in both states. 
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