Lead and Nickel Accumulation in Brassica juncea arawali Growing in Contaminated Soil

Leela Kaur, Kasturi Gadgil, Satyawati Sharma

Abstract


Brassica juncea arawali plants were exposed to 0, 100, 200, 400 and 800 mg/l concentrations of Lead (Pb) and Nickel (Ni). Plants were treated with control, ethylene diamine tetraacetic acid (EDTA) and salicylic acid (SA) chelant applications at Micromodel experimental site of Indian Institute of Technology, Delhi in 2009. A high level of combined metal concentrations (1600 mg/l) was taken to assess the feasibility of phytoextraction on a high-level metal contaminated soil. Plants were analyzed for growth parameters, biochemical parameters and metal accumulation. EDTA decreased all morphological parameters whereas SA stimulated them. All biochemical parameters showed declination with increasing Pb and Ni concentrations. A higher accumulation of chlorophyll, soluble sugars, soluble proteins and proline occurred in Indian mustard plants treated with SA. Pb and Ni accumulation in plants increased in a dose-response manner with increasing levels of metal treatments and time. EDTA was found to be more efficient chelant than SA for removal of Pb and Ni from contaminated soil.

Keywords


Brassica juncea; Ethelyne diamine tetraacetic acid; Lead; Nickel; Phytoextraction; Salicylic acid

Full Text:

PDF xml

References


Gall J.E., Boyd R.S., Rajakaruna N., 2015. Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess. 187, 201-207.

Khan A., Khan S., Khan M.A., Qamar Z., Waqas M., 2015. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res. 22, 13772-13799.

Maleki M., Ghorbanpour M., Kariman K., 2017. Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant Gene. 11B, 247-254.

Ali H., Khan E., Sajad M.A., 2013. Phytoremediation of heavy metals-Concepts and applications. Chemosphere. 91, 869-881.

Khalid S., Shahid M., Niazi N.K., Murtaza B., Bibi I., Dumat C., 2016. A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor. 182B, 247-268.

Garbisu C., Alkorta I., 2001. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol. 77, 229-236.

Ghosh M., Singh S.P., 2005. A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Eco Environ Res. 3, 1-18.

Kotrba P., Najmanova J., Macek T., Ruml T., Mackova M., 2009. Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv. 27(6), 799-810.

Mandal A., Purakayastha T.J., Ramana S., Neenu S., Bhaduri D., Chakraborty K., Manna M.C., Rao A.S., 2014. Status on Phytoremediation of Heavy Metals in India- A Review. Int J Bio-resour. Stress Manage. 5(4), 553-560.

Mahar A., Wang P., Ali A., Awasthi M.K., Lahori A.H., Wang Q., Li R., Zhang Z., 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol Environ Saf. 126, 111-121.

Lajayer B.A., Mansour L., Ghorbanpour M., Nikabadi S., 2017. Heavy metals in contaminated environment, Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol Environ Saf. 145, 377-390.

Mahmood-ul-Hassan M., Suthar V., Ahmad R., Yousra M. 2017. Heavy metal phytoextraction-natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat. Environ Mental Monit. Assess. 189, 11-16.

Wu C., Zhang X., Deng Y., 2017. Review in strengthening technology for phytoremediation of soil contaminated by heavy metals. IOP Conference Series, Earth and Environmental Science 78, 012015. https://doi.org/10.1088/1755-1315/78/1/012015

Zucconi F., Forte M., Monac A., Beritodi M., 1981. Biological evaluation of compost maturity. Biocycle. 22, 27-29.

Hoekstra N.J., Bosker T., Lantinga E.A., 2002. Effects of cattle dung from farms with different feeding strategies on germination and initial root growth of cress (Lepidium sativum L.). Agric Ecosyst Environ. 93, 189-196.

Thimmaiah S.K., 1999. Standard methods of biochemical analysis. Kalyani publishers, New Delhi.

Arnon D.I., 1949. Copper enzymes in isolated chloroplasts Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1-15.

Yem E.W., Willis A.J., 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem J. 57, 508-514.

Bradford M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 7(72), 248-254.

Bates L.S., Waldeen R.P., Teare I.D., 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39, 205-207.

Zayed A., Gowthaman S., Terry N. 1998. Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual. 27, 715-721.

Ilbas A.I., Eroglu Y., Eroglu H.E., 2006. Effects of dosages and application periods of EDTA on morphological and cytogenetic characters of Barley (Hordeum vulgare L.) seedlings. Turkish J Biol. 30, 59-63.

Popova L.P., Maslenkova L.T., Yordanova R.Y., Ivanova A.P., Krantev A.P., Szalai G., Janda T., 2009. Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem. 47, 224-231.

Citterio S., Santagostino A., Fumagalli P., Prato N., Ranalli P., Sgorbati S. 2003. Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil. 256(2), 243-252.

Yousefi N., Chehregani A., Malayeri B., Lorestani B., Cheraghi M. 2011. Effect of the heavy metals on the developmental stages of ovule and seed proteins in Chenopodium botrys L. (Chenopodiaceae). Biol Trace Elem Res. 144(1-3), 1142-1149.

Senaratna T., Touchell D., Bunn E., Dixon K., 2000. Acetyl salicylic acid (asprin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. 30, 157-161.

Stevens J., Senaratna T., Sivasithamparam K., 2006. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma), associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul. 49, 77-83.

Paz A., 2007 Paz-Alberto, A.M., Sigua, G.C., Baui, B.G., Prudente, J.A. 2007. Phytoextraction of lead-contaminated soil using vetivergrass (Vetiveria zizanioides L.), cogongrass (Imperata cylindrica L.) and carabaograss (Paspalum conjugatum L.). Environ Sci Pollut Res. 14, 498-504.

He J., Ren Y., Pan X., Yan Y., Zhu C., Jiang D., 2010. Salicylic acid alleviates the toxicity effect of cadmium on germination, seedling growth, and amylase activity of rice. J Plant Nutr Soil Sci. 173, 300-305.

Opeolu B.O., Adenuga O.O., Ndakidemi P.A., Olujimi O.O., 2010. Assessment of phyto-toxicity potential of lead on tomato (Lycopersicon esculentum L.) planted on contaminated soils. Int J Phys Sci. 5, 68-73.

Yilmaz K., Ersin I., Akinci A.S., 2009. Effect of lead accumulation on growth and mineral composition of eggplant seedlings (Solanum melongena). N Z J. Crop Hortic Sci. 37, 189-199.

El-Tayeb M.A., El-Enany A.E., Ahmed N.L., 2006. Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regul. 50, 191-199.

Mahmood T., Islam K.R., Muhammad S., 2007. Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pak J Bot. 39, 451-462.

Nosalewicz A., Kosynets O., Nosalewicz M., 2008. Effect of various concentrations of lead and cadmium on early growth of maize. Acta Agrophys. 11, 715-723.

Eissa M.A., Ghoneim M.F., El-Gharably G.A., El-Razek M.A., 2014. Phytoextraction of nickel, lead and cadmium from metals contaminated soils using different field crops and EDTA. World Appl Sci J. 32(6), 1045-1052.

Wang K.S., Huang L.C., Lee H.S., Chen P.Y., Chang S.H. 2008. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution, effects of cadmium speciation. Chemosphere. 72, 666-672.

Chen J.C., Wang K.S., Chen H., Lu C.Y., Huang L.C., Li H.C., Peng T.H., Chang S.H., 2010. Phytoremediation of Cr(III) by Ipomonea aquatica (water spinach) from water in the presence of EDTA and chloride, Effects of Cr speciation. Bioresour. Technol. 101, 3033-3039.

Vassil A.D., Kapulnik Y., Raskin I., Salt D.E., 1998. The role of EDTA in lead transport and accumulation by Indian mustard. J Plant Physiol. 117, 447-453.

Li Y.L., Liu Y.G., Liu J.L., Zeng G.M., Li X., 2008. Effects of EDTA on lead uptake by Typha orientalis Presl: A new lead-accumulating species in southern China. Bull Environ Contam Toxicol. 81, 36-41.

Sinhal V.K., Srivastava A., Singh V.P. 2010. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). J Environ Biol. 31, 255-259.

Hsiao K.H., Kao P.H., Hseu Z.Y., 2007. Effects of chelators on chromium and nickel uptake by Brassica juncea on serpentine-mine tailings for phytoextraction. J Hazard Mater. 148, 366-376.

Van Engelen D.L., Sharpe-Pedler R.C., Moorhead K.K., 2007. Effect of chelating agents and solubility of cadmium complexes on uptake from soil by Brassica juncea. Chemosphere. 68, 401-408.

Gunes A., Inal A., Alpaslan M., Eraslan F., Bagci E.G., Cicek N., 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol. 164, 728-736.

Metwally A., Finkemeier I., Georgi M., Dietz K.J., 2003. Salicylic Acid alleviates the cadmium toxicity in barley seedlings. J Plant Physiol. 132, 272-281.

Mba F.B., Zhi-Ting X., Hai-Jie Q., 2007. Salicylic acid alleviates the cadmium toxicity in chinese cabbages (Brassica chinensis). Pak J Biol Sci. 10, 3065-3071.

Krantev A., Yordanova R., Janda T., Szalai G., Popova L., 2008. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol. 165, 920-931.

Guo B., Liang Y., Zhu Y., 2009. Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J Plant Physiol. 166, 20-31.

Küpper H., Küpper F., Spiller M., 1996. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot. 47, 259-266.

Küpper H., Küpper F., Spiller M., 1998. In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res. 58, 123-133.

Kambhampati M.S., Begonia G.B., Begonia M.F.T., Bufford Y., 2005. Morphological and physiological responses of morning glory (Ipomoea lacunosa L.) grown in a lead- and chelate-amended soil. Int J Environ Res Public Health. 22, 299-303.

Li Y., Liu J., Liu Y., Li X., 2009. Effects of EDTA on mechanism of lead accumulation in Typha orientalis Presl. Bull Environ Contam Toxicol. 83, 553-557.

Saleh A.A.H., 2002. Response of anabolic capacities, proline, protein patterns and mineral elements to nickel and EDTA stress in Chorcorus olitorius. Pak J Biol Sci. 5, 455-460.

Chettri M.K., Cook C.M., Vardaka E., Sawidis T., Lanaras T., 1998. The effect of Cu, Zn and Pb on the chlorophyll content of lichens Cladonia convolute and Cladonia rangiformis. Environ Exp Bot. 39, 1-10.

Zhang C.J., Chen G.X., Gao X.X., Chu C.J., 2006. Photosynthetic decline in flag leaves of two field-grown spring wheat cultivars with different senescence properties. S Afr J Bot. 72, 15-23.

Zengin F.K., Munzuroglu O., 2005. Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in Bean (Phaseolus vulgaris L.) seedlings. Acta Biol Cracoviensia Ser Bot. 47, 157-164.

Loggini B., Scartazza A., Brugnoli E., Navari-Izzo F., 1999. Antioxidant defense system, pigment composition and photosynthetic efficiency in two wheat cultivars subjected to drought. J Plant Physiol. 119, 1091-1099.

Asada K., Endo T., Mano J., Miyake C., 1998. Molecular mechanism for relaxation of and protection from light stress. In: Saton K. and Murata N. (eds.). Stress responses of photosynthetic organisms. Elsevier, Amsterdam. pp. 37-52.

MacFarlane G.R., Burchett, M.D., 2001. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Marine Poll Bull. 42, 233-240.

Anderson J.M., 1986. Photoregulation of the composition, function and structure of the thylakoid membranes. Annu Rev J Plant Physiol. 37, 93-136.

Kamel H.A., 2008. Lead accumulation and its effect on photosynthesis and free amino acids in Vicia faba grown hydroponically. Aust J Basic & Appl Sci. 2, 438-446.

Bhardwaj P., Chaturvedi A.K., Prasad P., 2009. Effect of enhanced lead and cadmium in soil on physiological and biochemical attributes of Phaseolus vulgaris L. Nature Sci. 7, 63-75.

Demirevska-Kepova K., Simova-Stoilova L., Stoyarova Z., Holzer R., Feller U., 2004. Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot. 52, 253-266.

Alia N., Sardar K., Said M., Salma K., Sadia A., Sadaf S., Toqeer A., Miklas S. 2015. Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment. Int J Environ Res Public Health. 12(7), 7400-7416.

Palma J.M., Sandalio L.M., Corpas F.J., Romero-Puertas M.C., McCarthy I., del Río L.A., 2002. Plant proteases, protein degradation, and oxidative stress, role of peroxisomes. Plant Physiol Biochem. 40, 521-530.

Chandra R., Bharagava R.N., Yadav S., Mohan D., 2009. Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. J Hazard Mater. 162, 1514-1521.

Kovacik J., Gruz J., Hedbavny J., Klejdus B., Strnad M., 2009. Cadmium and nickel uptake are differentially modulated by salicylic acid in Matricaria chamomilla plants. J Agric Food Chem. 57, 9848-9855.

Bharagava R.N., Chandra R., Rai V., 2008. Phytoextraction of trace elements and physiological changes in Indian mustard plants (Brassica nigra L.) grown in post methanated distillery effluent (PMDE) irrigated soil. Bioresour Technol. 99, 8316-8324.

Singh S., Sinha S., 2005. Accumulation of metals and its effect in Brassica juncea L. Czern. (var. rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Saf. 62, 122-127.

Alia-Saradhi P.P., 1991. Proline accumulation under heavy metal stress. J Plant Physiol. 138, 554-558.

Kuznetsov V.V., Shevyakova N.I., 1997. Stress responses of tobacco cells to high temperature and salinity. Proline accumulation and phosphorilation of polypeptides. Physiol Planta. 100, 320-326.

Choudhary M., Jetley U.K., Khan M.A., Zutshi S., Fatma T., 2007. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Saf. 66, 204-209.

Shakirova F.M., Sakhabutdinova A.R., Bezrukova M.V., Fathutdinova R.A., Fathutdinova D.R., 2003. Changes in hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164, 317-322.

Fatma A.G., 2007. Effect of salicylic acid on the growth, metabolic activities and oil content of basil and marjoram. Int J Agri Biol. 8, 485-492.

Madrid F., Liphadzi M.S., Kirkham M.B., 2003. Heavy metal displacement in chelate irrigated soil during phytoremediation. J Hydrol. 272, 107-119.

Collins R.N., Merrington G., McLaughlin M.J., Knudsen C., 2002. Uptake of intact zinc-ethylenediaminetetraacetic acid from soil is dependent on plant species and complex concentration. Environ Toxicol Chem. 21, 1940-1945.

Bell P.F., McLaughlin M.J., Cozens G., Stevens D.P., Owens G., South H., 2003. Plant uptake of 14C-EDTA, 14C-citrate and 14C-histidine from chelator-buffered and conventional hydroponic solutions. Plant Soil. 253, 311-319.

Chen H., Cutright T. 2001. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere. 45, 21-28.

Jarvis M.D., Leung D.W.M., 2001. Chelated lead transport in Chamaecytisus proliferus (L.f.) link ssp. proliferus var. palmensis (H. Christ): an ultrastructural study. Plant Sci. 161, 433-441.

Lombi E., Zhao F.J., Dunham S.J., McGrath S.P., 2001. Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual. 30, 1919-1926.

Jarvis M.D., Leung D.W.M., 2002. Chelated lead transport in Pinus radiate: an ultrastructural study. Environ Exp Bot. 48, 21-32.

Suthar V., Mahmood-ul-Hassan M., Memon K.S., Rafique E., 2013. Heavy-metal phytoextraction potential of spinach and mustard grown in contaminated calcareous soils. Commun Soil Sci Plant Anal. 44(18), 2757-2770.

Babaeian E., Homaee M., Rahnemaie R., 2016. Chelate-enhanced phytoextraction and phytostabilization of lead-contaminated soils by carrot (Daucus carota). Arch Agro Soil Sci. 62(3), 339-358.

Sharma H., 2016. Phytoremediation of lead using Brassica juncea and Vetiveria zizanioides. Int J Life Sci Res. 4(1), 91-96.

Hosseini S.S., Lakzian A., Halajnia A., Hammami H., 2017. The Effect of olive husk extract compared to the EDTA on Pb availability and some chemical and biological properties in a Pb-contaminated soil. Int J Phytoremediation DOI: 10.1080/15226514.2017.1365352 (12 pages).


Refbacks

  • There are currently no refbacks.